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A: GRAPHS FOR CO2, H2O AND CO EMITTANCE 

 
 Alberti et al. (2018, 2024) use HITEMP 2010 line-by-line data to compose accurate 

emittance charts for CO2, water vapor and CO, along with pressure and overlap corrections for 

mixtures of these absorbing/emitting gases mixed with nonparticipating N2. Aside from the 

addition of CO to the original Hottel charts (Hottel 1954), the new charts are extended to higher 

pressures and temperatures. The authors have also constructed curve fits of the new data to allow 

accurate interpolation and made available an EXCEL worksheet using these interpolations to allow 

convenient calculation of the emittance of mixtures of CO2, H2O, CO and N2 at temperatures and 

pressures within the range of the computed emittance values (300 < T < 3000 K and 0.1 < P <  100 

atm). The worksheet is available at  
 

https://www2.cloud.editorialmanager.com/jqsrt/download.aspx?id=176181&guid=7aa9ce9a

-233e-4478-b41a-66d56844ed17&scheme=1   
 

Prof. Alberti has kindly provided the charts for inclusion here, and they are reproduced 
below. 

           For a gas mixture, the total emittance is found from 
H2O H2O CO2

tot H2O CO2 CO CO2 CO CO =  +  +  −  −  −  +            (A.1) 

In Eq. (A.1), the first three terms are the emittances of the individual gases at their respective 
pressure-path lengths (bar-cm) and at the mixture temperature, found from Figures A.1 – A.3. 

These are based on an equivalent pressure, PE, given by 

( )

( )

( )
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where the xi values are the mole fractions of each component in the mixture with N2. The next 

three terms are the binary overlap corrections from Figs. A.4 - A.6, and the final term in Eq. (A.1) 

is the ternary overlap correction, needed only if more than two gases are present in the mixture. 

This final term is given by 
H2O 2 CO H2O CO2 CO
COmax( : )CO

CO =  +  −               (A.3) 

Some assumptions are built into the relations for pressure and overlap corrections, but comparisons between 

emittance values computed from the charts or worksheet and line-by-line calculations have shown that the 

graphical and worksheet results are within better than 1 percent of the exact LBL values. Alberti et al. 

(2018) give worked examples to illustrate use of the charts and worksheet. 

 Tam and Yuen (2019) provide an open-source tool for emittance and absorptance of CO2-H2O-N2-

O2-soot mixtures for combustion calculations. Alberti et al. (2020) provide an updated method for 

computing the absorptance of CO2, H2O, CO, N2 mixtures exposed to blackbody radiation at an 

arbitrary source temperature. 
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A.1 Emittance of Carbon Dioxide  
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A.2 Emittance of Water Vapor 
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A.3 Emittance of Carbon Dioxide 
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A.4 Pressure Correction for Carbon Dioxide 
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A.5 Pressure Correction for Water Vapor 
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A.6 Pressure Correction for Carbon Monoxide 
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A.7 Overlap Correction for Water Vapor-Carbon Dioxide Mixtures 
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A.8 Overlap Correction for Carbon Dioxide-Carbon Monoxide Mixtures 
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A.9 Overlap Correction for Water Vapor-Carbon Monoxide Mixtures 

 

THE ORIGINAL HOTTEL CHARTS 

Hottel’s original graphs of the total emittance ε(pLe,T) for CO2 and H2O (Hottel, 1954; 

Hottel and Sarofim, 1967) have been widely used after they were published for radiative energy 

transfer calculations in combustion chambers. They were based on experimental data with 

extrapolations to high temperatures and large Le-partial pressure regions based on theory and were 

a significant advance in providing data for engineering design.   

Leckner (1972) gives empirical correlations for the total emittance derived from 

calculations summing narrow band behavior over the spectrum for both water vapor and CO2. The 

most accurate expressions from Leckner agree within 5% to values calculated from spectral data 

for T > 400 K and are in close agreement with Hottel charts for ranges where Hottel based his 

charts on experimental data. Docherty (1982) compares Leckner’s predictions with those of Hottel 

as well as with more recent experimental data and concludes that Leckner’s predictions are more 
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accurate than Hottel’s charts in the regions where Hottel extrapolated outside the range of 

experimental data available to him.  

Leckner’s correlations and equations are functions of p in bar and Le in cm. The correlation 

equation is 

 e 0 e

1

( , ) exp log( )

M
j

j

j

T pL a a pL

=

  
 = + 

  
      (A.4) 

where ( )0
1

/1000
N i

j j ij
i

a c c T
=

= +  and the values of cij are in Table A.1 for water vapor and for 

CO2.   

 
For water vapor, the pressure correction from Leckner is 

2 2 2H O H O H O1 ( 1)C = +  −        (A.5) 

where 
 

 
2
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−

− +
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and 
 2

2

2
10 10 H O e

H O

log [13.2( /1000) ] log ( )
exp

2

T p L −
  = −
 
 

. 

The effective pressure is given by 
2 2

1/2
E, H O t H O t1 4.9( / )(273/ )P P p P T = +   and Pt is the total 

pressure of the air–H2O mixture. In the expression for Λ, the T in the expression in square brackets 

is replaced by 750 if T < 750 K. 

The pressure correction for CO2 from Leckner is given by 

2 2 2CO CO CO1 ( 1)C = +  −        (A.6) 
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where 
2

2

2

1.45
E,CO

CO 1.45
E,CO

1.00 0.10( /1000) 0.23

1.00 0.10( /1000) 0.77

T P

P T

−

−

 + +  =
 + + − 

   

and   2 2CO 10 CO eexp 1.47 log ( )p L = −  − . 

The effective pressure is given by  2 2E,CO t CO t1 0.28( / )P P p P= + , where Pt is the total pressure of 

the air–CO2 mixture. In the expression for Ξ, μ = log10[0.225(T/1000)2] if T > 700 K, and 

μ = log10[0.054(T/1000)−2] if T < 700 K.  

 An empirical expression for the band overlap correction that is in good agreement with the 

Hottel chart (Leckner 1972) valid for 1000 < T < 2200 K and all pressures is 

 
2.7610.4

10 e0.0089 log ( )
10.7 101

pL
 

 = −  
+  

    (A.7) 

where ( )2 2 2H O H O COp p p = + , ( )2 2H O COp p p= +  is in bars, and Le is in cm. 

The emergence of the accurate line-by-line data bases (used in generating the charts and spread 

sheet by Alberti et al. 2018) has largely superseded the pioneering work of Hottel. 

Example A.1  

A container with effective radiation thickness of Le = 2.4 m contains a mixture of 15 volume percent of CO2, 20% H2O vapor, 

and the remainder air. The total pressure of the gas mixture is 1 atm, and the gas temperature is 1200 K. What is the 

emittance of the gas? 

     The partial pressures of the gases are equal to the mole fraction of each times the total pressure. The mole fraction in an 

ideal gas mixture is equal to the volume fraction, so the partial pressures are =
2CO 0.15p , =

2H O 0.20p , and pair = 0.65 atm. 

For water vapor, the aj values are ( )
=

= + 0
1

/1000
N i

j j ij
i

a c c T , giving a1 = −3.599, a2 = 1.766, and a3 = −0.248. Using Equation 

A.4 (remembering to convert the pressures to bars), 

=

 
 

 = + =   
  

2

M
j

H O e 0 j e

j 1

(T,pL ) exp a a log(pL ) 0.313.  

A similar calculation for CO2 gives (CO2) = 0.155.  No pressure correction is necessary because the total pressure is 1 atm. 

The overlap correction is calculated using 

 = = =
+ +

2

2 2

H O

H O CO

0.20
0.571

0.15 0.20

p

p p
 

and 

( ) ( )+ = +  

= 

2 2H O CO 0.15 0.20 (atm) 1.01325 (bar/atm) 240 (cm)

85.1(bar cm).

ep p L
 

Substituting results in 

 
 

 = −  = 
+  

2.7610.4
10 e0.0089 log (pL ) 0.051

10.7 101
 

The total emittance of the gas mixture is then 
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 =  +  −  = + − =
2 2mixture H O CO 0.313 0.155 0.051 0.417  

    Using the data in the spreadsheet for the Alberti correlations gives a value of  Alberti 0.401 =  
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B: DIRECTIONAL/SPECULAR SURFACE ENCLOSURES 

B.1 INTRODUCTION 

Many radiation analyses assume diffuse emitting and reflecting surfaces, and some treatments 

include the effect of specular reflections with diffuse emission (Section 6.6). Diffuse or specular 

surface conditions are the most convenient to treat analytically, and in many instances the detailed 

consideration of directional emission and reflection effects is unwarranted. However, certain 

materials and special situations require the examination of directional effects. 

 

 

Figure B.1 Radiant interchange between parallel directional surfaces of finite width L that are 

infinitely long in the direction normal to the plane of the drawing. 

The difficulty in treating the general case of directionally dependent properties is illustrated by 

performing an energy balance in a simple geometry: the radiative exchange between two infinitely 

long parallel nondiffuse gray surfaces of finite width L (Figure B.1). The radiation intensity leaving 

element dA1 in direction (θr,1,ϕr,1) is composed of emitted and reflected intensities: 

( ) ( ) ( )1 r,1 r,1 e,1 r,1 r,1 ,1 r,1 r,1, , ,rI I I  =   +        (B.1) 

These two components are given by modifications of Equations 3.4 and 3.41 to convert Equation 

B.1 to the form 

( ) ( ) ( ) ( ) ( )
2

2
2

1 r,1 r,1 1 r,1 r,1 b,1 1 1 r,1 r,1 1 1 2 2 2 22

cos
, , , , , ,

A

I I T I dA
S


  =    +          (B.2) 

In the second term on the right of Equation B.2, the energy incident on dA1 from each element dA2 

is multiplied by the bidirectional total reflectivity to give the contribution to the intensity reflected 

from dA1 into direction (θr,1,ϕr,1). This is then integrated over A2 to include all energy incident on 

dA1 from A2. 
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A similar equation is written for an arbitrary element dA2 on surface 2. The result is a pair of 

coupled integral equations to be solved for I(θ, ϕ) at each position and for each direction on the 

two surfaces. Detailed property data for ε(θ, ϕ) and ρ(θr, ϕr, θi, ϕi) are often not available. For the 

case when T1 and T2 are not known and the temperature dependence of the properties is 

considerable, the solution for the entire energy-exchange distribution becomes very tedious. 

Approximations can be made, such as analytically simulating the real properties with simple 

functions, omitting certain portions of energy deemed negligible, or ignoring directional effects 

except those expected to provide significant changes from diffuse or specular analyses.  

The effect of polarization has been neglected in this treatment. It can be quite important when 

multiple specular reflections are present, as one polarized component may be quickly attenuated 

after multiple reflections while the other may not. Using an average reflectivity will not capture 

that effect. This is especially the case for long channels such as light pipes and fiber optics. 

An example is now given illustrating the effect of a directional-gray surface on radiative 

exchange. 

Example B.1 

Two parallel isothermal plates of infinite length and finite width L are arranged as in Figure B.2a. The upper plate is black, 
while the lower is a highly reflective gray material with parallel deep grooves of open angle 1° in its surface extending along 
the infinite direction. Such a surface might be constructed by stacking polished razor blades. The surroundings are at zero 
temperature. Compute the net energy gain by the directional surface if T2 > T1 and compare the result to the net energy gain 
if the directional-gray surface is replaced by a diffuse-gray surface with an emissivity equivalent to the hemispherical 
emissivity of the directional surface. 

 
Figure B.2 Interchange between grooved directional-gray surface and black surface: (a) geometry of problem (environment at 
zero temperature); (b) emissivity of directional surface. 

   In Howell and Perlmutter (1963), the directional emissivity is calculated at the opening of an infinitely long groove with 
specularly reflecting walls of surface emissivity 0.01. This is given by the dot-dashed line in Figure B.2b. The angle β1 is measured 
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from the normal of the opening plane of the grooved surface and is in the cross-sectional plane perpendicular to the length of 
the groove as in Figure B.2a. The ε1(β1) has already been averaged over all circumferential angles for a fixed β1. Thus, it is an 
effective emissivity for radiation from a strip on the grooved surface to a parallel infinitely long strip element on an imaginary 
semicylinder over the groove and with its axis parallel to the grooves. The angle β1 is different from the usual cone angle θ1. The 
actual emissivity ε1(β1) of Figure B.2b is approximated for convenience by the analytical expression ε1(β1) ≈ 0.830 cos β1. Using 
cylindrical coordinates to integrate over all β1, the hemispherical emissivity of this surface is 

( )




−



−

   

 = =   =

 






2

2
1 1 1 1

2 2
1 1 12

01 1
2

cos

0.830 cos 0.652

cos

d

d

d

 

and this is the dashed line in Figure B.2b. 
The energy gained by surface 1 will first be determined when surface 2 is black and surface 1 is diffuse with ε1 = 0.652. 

The energy emitted by the diffuse surface 1 per unit of the infinite length and per unit time is =  4
,1 10.652 .eQ T L  Because 

surface 2 is black, none of this energy is reflected to surface 1. The energy per unit length and time emitted by black surface 
2 that is absorbed by surface 1 is 

− −=   =   
2 1 1 2

4 4
,1 1 2 2 1 2 1 2 1 2 1a d d d d

A A A A

Q T dF dA T dF dA  

The configuration factor between infinite parallel strips, from Example 5.2, is dFd1−d2 = d(sinβ1)/2 so that 

( )−

=

 
  =  − 
 
 

  
1 2

1 2 1 1,max 1,min

0

1
sin sin

2

L

d d

A A x

dF dA dx 

From Figure B.2a, sin ( ) ( )  =  −  − +
 

1/2
2 2

1 x x D , which gives 

( ) ( )

( )

=

 
− =   +

 
− + + +  

 =  + −
  


4

,1 1 2 1/2 1/2
2 2 2 2 2

0

1/2
4 2 2

2

1

2 2

0.652

L

a

x

L x x
Q T dx

x xL L D x D

T L D D

 

 

Figure B.3 Effect of directional emissivity on absorption efficiency of surface. 

The net energy gained by surface 1, Qa,1 − Qe,1, divided by the energy emitted by surface 2, is a measure of the efficiency of 
the surface as a directional absorber. For surface 1, being diffuse, this ratio is (l = L/D). 
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( )
−  

= = + − − 
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4
1 2

a,1 e,1 2 1
diffuse 4 4

2 2

Q Q T0.652
Eff 1 l 1 l

T L l T

 

When surface 1 is a directional (grooved) surface, the amount of energy emitted from surface 1 is the same as for a diffuse 
surface (although it has a different directional distribution) since both have the same hemispherical emissivity. The energy 

absorbed by the grooved surface is, by using α1(β1) = 1(β1) for a gray surface, 



−

= 

− −

=

−


=    =  

 − −  
= + + +  − + + +  


=

  


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2 1 1,min

4
24 2

,1 2 1 1 2 1 2 1 1

0

4
2 1 1

2 2 2 2 2

0

4
2 1

0.830
( ) cos

2

0.830 ( )
tan tan

4 2

0.830
tan

2

L

a d d

A A x

L

x

T
Q T dF dA d dx

T D L x L x xD x
dx

x xL L D D x D D

T L

D

 

The absorption efficiency of the directional surface is then 

4

1 2 1 1

4

22

0 830
0 652

2

−
−  

= = −  
  

a, e,

directional

Q Q T.
Eff tan l .

TT L
 

The absorption efficiencies of the directional-gray and diffuse-gray surfaces are in Figure B.3 as a function of l with (T1/T2)4 
as a parameter. The Eff for the directional surface is higher than that for the diffuse surface for all values of l. As l approaches 
zero, the configuration approaches that of infinite elemental strips, and emission from surface 1 becomes much larger than 
absorption from surface 2. Thus, Effdirectional and Effdiffuse are nearly equal since the surfaces always emit the same amount. 
As l approaches infinity, the directional effects are lost. At intermediate l a 10% difference in absorption efficiency is 
attainable. 
 

 

Figure B.4 Local radiative energy loss from surface of isothermal groove cavity. Hemispherical 

emissivity of surface is assumed with ε = 0.1. 

The effects of directional properties on the local energy loss can be considerable for some 

geometries. In Figure B.4 some directional distributions of reflectivity are examined for their 

influence on local energy loss from the walls of an infinitely long groove. The results are from 

Viskanta et al. (1967), where for comparison the curves were gathered from original work and 
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various sources. The walls of the groove are at 90°, and the surface emissivity distributions are all 

normalized to give a hemispherical emissivity of 0.1. Curves are presented for diffuse reflectivity 

ρ, specular reflectivity assumed independent of incident angle ρs, specular reflectivity dependent 

on incident angle ρs(θi) based on electromagnetic theory, and three distributions of bidirectional 

reflectivity ρ(θr, θi). The bidirectional distributions are based on Beckmann and Spizzichino (1963) 

for rough surfaces having various combinations of the ratio of rms optical-surface roughness 

amplitude to radiation wavelength, σ0/λ, and the ratio of roughness autocorrelation distance to 

radiation wavelength, a0/λ. Note that the results in Figure B.4 for the specular and diffuse models 

do not provide upper and lower limits to all the solutions, as is sometimes claimed. Additional 

information on surface roughness as it affects the directional properties of surfaces is in Section 

4.2. Energy transfer was studied in a groove with two rough sides, each at uniform temperature. 

The roughness has a greater influence on the radiation exchange between the two sides than on the 

net radiation from the groove. 

B.2 SURFACES WITH DIRECTIONALLY AND SPECTRALLY DEPENDENT PROPERTIES 

The general case of radiative transfer in enclosures where surface properties depend on both 

direction and wavelength, and where properties can be temperature dependent, is complex to treat 

fully. When those dependencies must be included, numerical techniques are necessary. Toor 

(1967) used the Monte Carlo method to study radiation interchange for various simply arranged 

surfaces with directional properties. Zhang et al. (1997) derived the directional-spectral relation 

for radiative transfer between parallel plates. That is a generalization (with properties independent 

of angle ϕ) of Equation (6.5.3) in Example 6.5: 

( ) ( )

( ) ( )

/2

b,1 1 b,2 1

0 0

1 1 2 2

2 sin cos
1 1

1
, ,

E T E T
q d d

T T

 

 

= =

 

−
=    

+ −
   

    (B.3) 

A difficulty for such an evaluation is in finding the detailed radiative properties to sufficient 

accuracy. The technology of interest was for evaluating the insulating performance of a double 

glass window with a vacuum between the two panes. The glass surfaces are opaque in the infrared 

region  



B. DIRECTIONAL/SPECULAR SURFACE ENCLOSURES 
 

B-6 
  

 

Figure B.5 Geometry for incoming and outgoing intensities at a differential surface area. 

so that, for the temperatures involved, Equation (B.3) could be used for transfer across the vacuum 

space. Comparisons were made with experiments. 

In this section, the general integral equations are formulated for radiation in such systems, and a 

considerably simplified example problem is solved. The procedure is a combination of the 

previous diffuse-spectral and directional-gray analyses. The equations are formulated at one 

wavelength as in Section 6.7 and in terms of intensities for each direction as in Section 6.8; this 

accounts for both spectral and directional effects. The interaction between two plane surfaces is 

developed first; this can be generalized to a multisurface enclosure as for gray surfaces in Section 

6.3. 

The energy balance is now developed for an area element dA at location r in an x, y, z coordinate 

system as in Figure B.5. The Iλο(θr, ϕr, r) is the outgoing spectral intensity from dA in the direction 

θr, ϕr as the result of both emission and reflection. The spectral intensity emitted by dA in this 

direction is 

e r r r r b( , , ) ( , , ) ( )I I    =   r r r      (B.4) 

These quantities also depend on TdA, but this functional designation is omitted to simplify the 

notation. The intensity reflected from dA into the θr, ϕr direction results from the incident intensity 

from all directions of a hemisphere above dA. If the spectral intensity incident on dA within dΩi is 

Iλi(θi, ϕi, r), the intensity reflected from dA into direction θr, ϕr is 

( )
2

,r r r r r i i ,i i i i i

0

( , , ) ( , , , , ) , , cos

i

I I d



  

 =

  =         r r r     (B.5) 

The net energy flux supplied to dA for steady state is the difference between the outgoing and 

incoming radiative fluxes: 
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( ) ( ) ( )
0 0

q J d G d

 

 

= =

=  −  r r r      (B.6) 

The Jλ(r)dλ is the angular integration of the emitted and reflected spectral fluxes over all outgoing 

directions: 

 

Figure B.6 The interchange between surfaces having directional spectral properties (environment 

at ~0 K). 

( ) ( ) ( )

( )

r r

2 /2

b r r r r r r

0 0

2 /2

,

0 0

, , sin cos

, , sin cos

r r

r r r r r r r

J d I d d d

I d d d

 

  

 =  =

 



 =  =

 =        

+       

 

 

r r r

r

   (B.7) 

The Gλ(r)dλ is the result of spectral fluxes incident from all dΩi directions: 

( ) ( )
2 /2

,i i i i i i i

0 0

, , sin cos

i i

G d I d d d

 

 

 =  =

 =        r r    (B.8) 

Equations (B.4) through (B.8) provide an exact formulation to obtain the energy flux q(r) that must 

be supplied by other means to area dA to maintain its temperature at TdA in the presence of incident 

and emitted radiation. 

To develop an enclosure theory, various degrees of approximation can be made. If the enclosure 

is very simple, such as having only two infinite plane surfaces, it may be feasible to include 

variations of properties and surface temperature across each surface. To develop the required 
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integral equations, consider the two surfaces in Figure B.6 and let the surrounding environment be 

at low temperature so that it does not contribute incident radiation. The spectral energy leaving 

dA2 at r2 that reaches dA1 at r1 is Iλo,2(θ2,ϕ2,r2)dλdA2cosθ2(dA1cosθ1/S
2). In terms of the incident 

intensity, the incident spectral intensity in dΩ1 is Iλi,1(θ1,ϕ1,r1)dλdA1cosθ1dΩ1, where dΩ1 = 

(dA2cosθ2)/S
2. Thus, Iλi,1(θ1,ϕ1,r1) = Iλo,2(θ2,ϕ2,r2) and, by using Equations (B.4) and (B.5), 

( ) ( ) ( )

( ) ( )
2

,1 r,1 r,1 1 r,1 r,1 1 b,1 1

1 2
,1 r,1 r,1 i,1 i,1 1 o,2 2 2 2 22

2 1

, , , ,

cos cos
, , , , , ,

o

A

I I

I dA

  

 

  =   

 
+       

−

r r r

r r
r r

  (B.9) 

Similarly, for surface 2, the outgoing intensity is 

( ) ( ) ( )

( ) ( )
1

o,2 r,2 ,2 2 ,2 r,2 r,2 2 b,2 2

2 1
,1 r,2 r,2 i,2 i,2 2 o,1 1 1 1 12

1 2

, , , ,

cos cos
, , , , , ,

r

A

I I

I dA

  

 

  =   

 
+       

−

r r r

r r
r r

  (B.10) 

Equations (B.9) and (B.10) are both in terms of outgoing intensities, and they provide a set of 

simultaneous integral equations for Iλο,1 and Iλο,2, where the subscript o denotes the outgoing 

direction. An iterative numerical solution is required that can be quite complex as both unknowns 

are functions of position and angle. After Iλο,1(θ1, ϕ1, r1) and Iλο,2 (θ2, ϕ2, r2) are obtained, the total 

energy can be determined that must be supplied to each surface element to maintain the specified 

local surface temperature. The total energy supplied is the difference between the total emitted and 

absorbed energies: 

( ) ( )

( ) ( )
2

1
,1 r,1 r,1 1 b,1 1 1 1

1
0

1 2
,1 i,1 i,1 1 o,2 2 2 2 22

2 10

, , cos

cos cos
, , , ,

A

dQ
I d d

dA

I dA d



 

= 



 

=

=      

 
−      

−

 

 

r r

r r
r r

   (B.11) 

To develop an enclosure theory with more than a few surfaces, the Iλo, temperature, and surface 

properties are usually assumed uniform over each enclosure surface. In addition, a finite number 

of angular intervals must be specified. If we let Ak and Aj be the kth and jth surfaces of an enclosure 

with N surfaces, then, by integrating Equation (B.9) over Ak and summing the contributions from 

all of the Aj surfaces, 

( ) ( )

( ) ( )

o, r, r, , r, r, b,

, r, r, i, i, o, 2

1

, ,

cos cos1
, , , ,

k j

k k k k k k k

N

k j
k k k k k j j j j k

k j kj A A

I I

I dA dA
A

  

 

=

  =   

 
+       

−
 r r

  (B.12) 
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When written out for each surface k and for a sufficient number of directions (θr,k, ϕr,k) to obtain 

acceptable accuracy in the angular integrations that follow, this yields a set of simultaneous 

equations for Iλo,k(θr,k,ϕr,k) for k = 1,…,N. 

With this degree of approximation, which is characteristic for enclosure analyses, consider the 

interaction of the two plane surfaces in Figure B.6. The surroundings are at low temperature 

relative to the surface temperature, so radiation from the surroundings is neglected; this provides 

a two-surface enclosure. Then, writing Equation (B.12) for k = 1 and 2, 

( ) ( )

( ) ( )
1 2

o,1 r,1 r,1 r,1 r,1 b,1

1 2
,1 r,1 r,1 i,1 i,1 o,2 2 2 2

1

, ,

1 cos cos
, , , , j k

A A

I I

I dA dA
A S

  

 

  =   

 
+       

  (B.13) 

( ) ( )

( ) ( )
2 1

o,2 r,2 r,2 ,2 r,2 r,2 b,2

2 1
,2 r,2 r,2 i,2 i,2 o,1 1 1 1 22

2

, ,

1 cos cos
, , , ,

A A

I I

I dA dA
A S

  

 

  =   

 
+       

  (B.14) 

Equations (B.13) and (B.14) are in terms of outgoing intensities in each direction θr,k, ϕr,k; they are 

simultaneous integral equations for Iλo,1 and Iλο,2. A numerical solution can be obtained by writing 

these equations for many discrete angular intervals to develop a set of simultaneous equations. 

After Iλo,1(θr,1,ϕr,1) and Iλo,2(θr,2,ϕr,2) are obtained for enough angular intervals to yield good 

accuracy, the total energy can be determined that must be supplied to each surface to maintain its 

specified temperature. This is the difference between energies carried away from and to the 

surface; for A1 this gives 

( )

( )
1 2

1
o,1 r,1 r,1 r,1 r,1

1
0

1 2
o,2 2 2 2 12

1
0

, cos

1 cos cos
,

A A

Q
I d d

A

I dA dA d
A S





= 





=

=     

 
−   

 

  

    (B.15) 

and similarly for A2. For diffuse-gray surfaces, so that Iλο,1 and Iλο,2 are independent of λ, θ, and ϕ, 

this simplifies to Q1/A1 = πIο,1−πIο,2F1−2 = J1−J2F1−2 as given by Equation (6.17). 

If Q1 rather than T1 is specified, T1 must be found and the solution becomes more difficult. A 

temperature is assumed for A1, and the enclosure equations of the form Equations (B.13) and (B.14) 

are solved to find the Iλo. The outgoing intensities are substituted into Equation (B.15), and the 

computed Q1 is compared to the given value. The T1 is then adjusted and the procedure repeated 

until agreement between given and computed Q1 is attained. If Q is specified for more than one 

surface, the solution is even more difficult. 

Example B.2 
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For an example that can be carried out in analytical form, a small area element dA1 is considered on the axis of, and parallel 
to, a black circular disk as in Figure B.7. The element is at T1, the disk at T2, and the environment at Te ≈ 0 K. The dA1 has a 
directional spectral emissivity independent of ϕ and approximated by 

− 
  =  − 2 1/
,1 1 1 1( , ) 0.8cos (1 )C TT e  

where C2 is one of the constants in Planck’s spectral distribution. As will be evident, this dependence on λ and T1 was devised 
to simplify this illustrative example and obtain an analytical result. More generally, numerical integration can be used. Find 
the energy dQ1 added to dA1 to maintain T1. 

 

Figure B.7  Radiative energy exchange involving directional spectral surface element (cold environment at ~0 K). 

 
The energy balance in Equation (B.11) is emitted energy minus absorbed incident energy. The energy emitted by dA1 is 



 

= 

=      ,1 1 ,1 1 ,1 1 1

0

( ) cose bdQ dA I d d  

Insert the expressions for ελ,1Iλb,1 (Equation (3.3)), and dΩ1 = sinθ1dϕ1 to obtain 

  

− 



=  =  =

=  −    
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Integrating over ϕ1 and θ1 gives 






= 

 2 1

1
,1 1 5 /

0

2 2
0.8

3
e C T

C
dQ dA d

e
 

Using the transformation ζ = C2/λT1, the relation 


−  =
3

0

3!e d  from a table of definite integrals, and Stefan–Boltzmann 

constant σ from Equation (2.33) yields 

=  = 


4 4
,1 1 1 1 14

48
0.493edQ T dA T dA 

Thus, the total hemispherical emission is about half that of a blackbody. 
The energy absorbed by dA1 is 



 

=

 
=       
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0
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dQ dA I dA d
S
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From Kirchhoff’s law, the directional spectral absorptivity and emissivity are equal. For dA2 taken as a ring element, the solid 
angle cos θ2dA2/S2 is written as 2π sin θ1dθ1. This is used to write the absorbed energy as (where Iλo,2 = Iλb,2 since A2 is a black 
surface) 


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− 
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Using the transformation ζ = C2/λT1, this is placed in the form 

  
= −     +   

24
,1 2 14 2 3/2

1

48 1
1

(1 )
a

T
dQ T dAG

r T
 

where r = R/D and 


−  −=  − −  2 13 /
2 1

0

( / ) (1/6) (1 )/(1 )T TG T T e e e d . This integral was evaluated numerically, giving G(1.0) = 1.000, 

G(1.5) = 1.045, and G(2.0) = 1.063; hence, the effect of temperature ratio is small. Finally, the energy added to dA1 to 
maintain it at T1 is given by 

     
= − = − −    +    

24 4
1 ,1 ,1 1 2 14 2 3/2

1

48 1
1

(1 )
e a

T
dQ dQ dQ T T G dA

r T
 

As shown by Example B.2, it is difficult to devise an analytical function for ελ(θ, T) that can be 

integrated in closed form over both angle and wavelength. Numerical methods are required to 

solve problems of this type for ελ(θ, T) functions that represent experimental data. 

The development in this section has shown that, although the formulation of radiation-exchange 

problems involving directional and/or spectral properties is not conceptually difficult, it is usually 

tedious to solve the resulting integral equations. To simplify the equations, it is usually necessary 

to make assumptions and approximations that can vary from case to case. Numerical techniques 

such as iteration are used for directional spectral formulations, since closed-form analytical 

solutions can rarely be obtained. An alternative numerical technique is the Monte Carlo method 

presented in Section 10.6. For complicated directional and spectral effects, this is often a better 

approach than using an integral equation formulation. 

A surface with part specular and part diffuse reflectivity and a semigray analysis were used by 

Shimoji (1977) to find local temperatures in conical and V-groove cavities exposed to incident 

solar radiation parallel to the cone axis or V-groove bisector plane. Toor and Viskanta (1972) 

compared with experiment various analytical models using diffuse, specular, semigray, nongray, 

and combinations of these characteristics. They found, for the particular geometries and materials 

studied, that spectral effects were less important than directional effects and that the presence of 

one or more diffuse surfaces in an enclosure made the presence of specularly reflecting surfaces 

unimportant. Wijnen et al. (2021) included polarization along with angular effects in their 

approach. If grooves on a surface have a size that is comparable to or smaller than the wavelength 

of the incident or emitted radiation, there can be complex interactions of the electromagnetic waves 

within the grooves. This can produce unusual spectral and directional effects. The radiation 
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behavior of materials with a manufactured microstructure was studied by Hesheth et al. (1988), 

Glass et al. (1982), Wirgin and Maradudin (1985), Sentenac and Greffet (1994), Hajimirza et al. 

(2011, 2012), Krishna and Lee (2018), Sullivan et al. (2021), and Simeroth et al. (2022) 
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C: INTEGRATION METHODS 

C.1: NUMERICAL INTEGRATION METHODS  

Integration methods are discussed for use in numerical solutions of pure radiation or combined-mode 

problems. For radiative exchange, the integrals are often a function of two position variables, and 

integration is over one or both. For example, the configuration factor dFdi–dj from position ri on 

surface i to position rj on surface j appears in the integral over surface j to obtain Fdi–j in the form [see 

Equation (5.12) in the text] 

(r ) (r , r ) (r , r )di j i Aj di dj i j Aj i j jF dF K dA− −=  =   (C.1) 

Many ways can be used to numerically approximate an integral. Because the integrands in 

radiative enclosure formulations are usually well behaved at the end points, closed numerical 

integration forms are often used that include the end points. Open methods do not include the end 

points and can be used when end-point values are indeterminate, such as for improper integrals that 

yield finite values when integrated. In analyses including convection and/or conduction, the 

numerical integration will usually use the grid spacing imposed by the differential terms. In some 

situations, it is enough to use numerical integration methods that have regular grid spacing. However, 

uneven spacings are often advantageous to place more points in regions where functions have large 

variations, or to adequately follow irregular boundaries. Gaussian quadrature can be used for variable 

grid spacing. Simpler schemes such as the trapezoidal rule or Simpson’s rule may be adequate for 

some problems. These often employ uniform grid spacing and are closed, whereas Gaussian 

quadrature is open. The trapezoidal rule can readily be used with a nonuniform grid size. Textbooks 

on numerical methods provide detailed presentations of the many available integration methods and 

their relative accuracies, advantages, and disadvantages. Libraries of computer codes and 

computational software packages have many subroutines for single or multidimensional numerical 

integrations that can be applied directly. 
 

C.1.1 TRAPEZOIDAL RULE 

The trapezoidal rule is a closed numerical integration method that can easily employ a variable 

increment size. Consider the function in Figure C.1, where an equal grid spacing of Δz is shown for 

the integration range from z0 to zN. In the trapezoidal rule each pair of adjacent points, such as f(x,zj) 

and f(x,zj+1), is connected by a straight line. Then the integral from zj to zj + l is approximated by 

1 1

1

( ) ( )
( , ) ( )

2

jz j j

j j
zj

f x f x
f x z dz z z

+ +

+

+
 −  

This approximation can be made for each interval between grid points, so an irregular grid spacing 

can be used. For equally sized increments, the sum over all intervals gives the approximation 

N

0

N 1

0 N

1

1 1
( , ) ( ) ( ) ( )
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z
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f x z dz z f x f x f x
−

=

 
  + + 
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  (C.2) 
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 FIGURE C.1 Numerical integration of the function f(x, z) with respect to z for a fixed x. 

 
EXAMPLE C.1  
Using the ring-to-ring configuration factor, evaluate the configuration factor from a ring element on the interior 
of a right circular cylinder to the cylinder base for the geometry in Figure C.2 when x = r. Use the trapezoidal 
rule and compare the result with the analytical solution. 

 
FIGURE C.2 Geometry for configuration factor from ring element on interior of cylinder to ring element on 

base. 

The factor from dA1 to a ring dA2 on the base surface is 
2 2

1 2 2 2 2 2 3/ 2

2 (1 )
( , )

[(1 ) 4 ]
d d

XR X R dR
dF X R

X R R
−

+ −
=

+ + −
 (C.3) 

where X = x/r and R = ρ/r. For this example, X = 1, so fj(X = 1, Rj) for Figure C.2 is given by 
2

4 3/2

2 (2 )
( 1, ) (1)

(4 )

j j

j j j

j

R R
f X R f

R

−
=  =

+
 

where Rj = jΔR and ΔR = 1/N. Letting ( 1, ) (1),j jf X j R f=    

2

0 4 3/ 2 3/ 2

2 [2 ( ) ] 2
(1) 0, (1) , (1)

[4 ( ) ] 5
j N

j R j R
f f f

j R

 − 
= = =

+ 
 

These terms are substituted into Equation (C.2), and for N = 5 yields 

1 2( 1) (1/ 5)[(1/ 2 0 0.09794 0.18225 0.23451 0.23500 (1/ 2) 0.17889] 0.16783− = =  + + + + +  =dF X  

 The exact configuration factor is in Appendix C of the text as 
2

21 2 1/ 2

1
12( 1) ,

2 2 2( 1)
d

X
x X

F X X X
rX



 

− 

+

= = − = = =
+

 

which gives 
1 2 1 2( 1) ( 0.5) 0.17082d dF X F X 

− −= = = = . Larger numbers of increments improve the accuracy as 

follows: 
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N Fd1–2(X = 1) % Error 

5 0.16783 −1.75 

10 0.17007 −0.44 

50 0.17079 −0.02 

100 0.17081 −0.006 

200 0.17082 0 

 
C.1.2 SIMPSON’S RULE 

The usual Simpson’s rule is obtained by passing a parabola through three adjacent grid points. For 

equally spaced increments the integral from zj to zj + 2 is approximated by 

2

1 2( ) ( 4 )
3

j

j

z

j j j
z

z
f z dz f f f

+

+ +


 + +  

Because this uses two Δz increments, the repeated application for a range with many grid points 

requires an even number of increments (an odd number of points). For N equally spaced increments 

in Figure C.1, the result is 

0 1 2 3 N 1 N( ) ( 4 2 4 4 )
3

N

o

z

z

z
f z dz f f f f f f−


 + + + + + +  (C.4) 

If an odd number of increments must be used, Simpson’s rule can be applied over an even number of 

increments, and the trapezoidal rule used for the remaining increment. 

If the curve in Figure C.1 goes through a sharp cusplike peak, it may not be accurate to apply 

Simpson’s rule if the peak is at the central point of the three adjacent points; the cusplike behavior is 

not accurately approximated by a parabolic curve. Simpson’s rule could be used for two increments 

on each side of the peak. Care should be used in selecting a suitable integration scheme for each 

application. 
Higher-order approximations have been developed by passing a cubic curve through four 

adjacent points, a fourth-order curve through five adjacent points, etc. These yield the Newton-Cotes 

closed integration formulas of which the trapezoidal and Simpson’s rules are the first two. Using a 

cubic curve through four adjacent points is called Simpson’s second rule, 

3

1 2 3

3
( ) ( 3 3 )

8

j

j

z

j j j j
z

z
f z dz f f f f

+

+ + +


 + + +  (C.5) 

In most instances, the functions inside the integrals of the integral equations are complicated 

algebraic quantities. This is because they involve a configuration factor. There is usually little chance 

that an analytical solution can be found, so a numerical solution is used. Consider the simultaneous 

integral equations in Equations (6.13.1) and (6.13.2) of Example 6.13 in the text. With T1(x) and T2(y) 

specified, the right sides are known functions of x and y. Starting with Equation (6.13.1), a distribution 

for q2(y) is assumed as a first trial. Then the integration is carried out numerically for various x values 

to yield q1(x) at these x locations. This q1(x) distribution is inserted into Equation (6.13.2) and a q2(y) 

distribution is determined. This q2(y) is used to compute a new q1(x) from Equation (6.13.2) and the 

process is continued until q1(x) and q2(y) are no longer changing as the iterations proceed. 

To perform the integrations in a computer solution, an accurate integration subroutine is required. 

Many subroutines are available, and they may require functions such as q1(x) and q2(y) evaluated at 

many evenly or unevenly spaced values of the x- and y-coordinates. The values can be obtained by 

curve fitting the q1(x) and q2(y) after each iteration with standard subroutines such as cubic splines. 

The q1(x) and q2(y) are then interpolated at the x and y values called for by the integration subroutine. 

A precaution should be noted. A quantity such as Jj dFdk − dj may go through rapid changes in 
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magnitude because of the geometry involved in the configuration factor; for example, dFdk−dj may 

decrease rapidly as the distance increases between dAk and dAj For small separation distances, there 

can be a strong peak in the integration kernel. Care should be taken that the integration method is 

accurate for the functions involved. The integration should be done on each side of a sharp peak and 

not passed through it. 

The Monte Carlo method of Chapter 10 in the text can be used for evaluating integrals, and some 

discussion of the methodology is given there. 

Direct solvers for a set of simultaneous equations can also be used for integral equations. The 

integrals are expressed in finite-difference form to provide a set of simultaneous equations for 

the unknowns at each increment position as in Example C.2. 

Example C.2 

For integral Equation (6.14.1) of Example 6.14 of the text, derive a set of simultaneous algebraic 
equations to determine J2(ξ) for l = 4. For simplicity, divide the length into four equal increments (Δη = 
1) and use the trapezoidal rule for integration. 
When Equation (6.14.1) is applied at the end of the tube where ξ = 0, the relation is obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )


− − + − + −




+ − + − =



2 2 2 2

2 2 2

1
0 0 0 0 1 1 0 2 2 0

2

1
3 3 0 4 4 0 1

2

J J K J K J K

J K J K q
   (C.6) 

The quantity in brackets is the trapezoidal-rule approximation for the integral. The ( )−  =K ( )−  /dF d  

is the algebraic expression within the braces of Equation (6.14.2). The J2(0) terms in Equation C.6 are 
grouped together to provide the first of Equation C.7. The other four equations are the finite-difference 
equations at the other incremental positions along the enclosure: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

 
− − − − − = 

 

 − + − − − − = 

 − − + − − − = 

 − − − + − − = 

− − − −

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

,2 ,2 ,2

1 1
0 1 0 1 1 2 2 3 3 4 4

2 2

1 1
0 1 1 1 0 2 1 3 2 4 3

2 2
1 1

0 2 1 1 2 1 0 3 1 4 2
2 2
1 1

0 3 1 2 2 1 3 1 0 4 1
2 2
1

0 4 1 3 2 2
2

o o o

J K J K J K J K J K q

J K J K J K J K J K q

J K J K J K J K J K q

J K J K J K J K J K q

q K q K q K ( ) ( ) ( ) ( )
 

+ − = 
 

,2 ,2 2

1
3 1 4 1 0

2
o oq K q K q

  (C.7) 

These equations are solved for J2 at the five surface locations. From symmetry, and with q2 uniform along 
the enclosure, it is possible to simplify the solution for this example by using J2(0) = J2(4) and J2(1) = J2(3). 
 

Equations such as Equation (C.7) are first solved for a moderate number of increments along the 

surfaces. Then the increment size is reduced, and the solution is repeated. This is continued until 

sufficiently accurate J(ξ) values are obtained. Equations (C.7) use the trapezoidal rule as a simple 

numerical approximation to the integrals. More accurate numerical integration schemes can be used, 

which may reduce the number of increments required for enough accuracy. 

Example C.2 has only one integral equation. For the situation with two integral equations in 

Equations (6.13.1) and (6.13.2) of text Example 6.13, each surface can be divided into increments 

and equations written at each incremental location. This yields N simultaneous equations for the total 
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of N positions on both plates that are solved simultaneously for the T1(r1) and q2(r2). This procedure is 

an alternative to the iterative solution described previously. The solver for the system of simultaneous 

equations may work by iteration. 

 
C.1.3 OTHER NUMERICAL INTEGRATION METHODS  

Additional numerical integration techniques include Romberg integration, in which the trapezoidal 

rule is utilized. The integration is performed with a small number of increments and is then repeated 

for twice the number of increments by adding the contributions from the additional points, four times 

the number of increments, etc. The sequence of integration results is extrapolated to an improved 

result using Richardson extrapolation [see Press et al. (1992)]. The process is continued until desired 

convergence accuracy is achieved in the extrapolated result. 

Gaussian integration is very useful; this is an open integration method using an array of 

unevenly spaced points. The uneven points can be positioned between a fixed grid of evenly or 

variably spaced points. This can be done by curve fitting, such as by cubic splines, for the individual 

portions of the curve between the fixed grid points. Values of the integrand at positions between the 

grid points for use in the Gaussian method are interpolated using the spline coefficients. 

Many numerical integration subroutines have been written for computer use and the software 

can be readily applied. Curve-fitting software routines are available that can be used in conjunction 

with Gaussian or other techniques, requiring interpolation to obtain unevenly spaced values of the 

function being integrated. Some subroutines perform multidimensional integrations. Computational 

software packages for mathematics provide numerical integration using, for example, Romberg 

integration, Simpson’s rule, and adaptive methods; singular and infinite end points are also treated. 

Fan et al. (2019) examine fast algorithms for solving the steady state integral form of the RTE based 

on fast Fourier transforms for homogeneous media and a recursive skeletonization-factorization 

technique for inhomogeneous media. They show that a unique solution to the RTE exists and provide 

sample solutions for isotropic and anisotropic scattering in 2- and 3D. Zhou et al. (2020) propose 

methods to subtract singularities in integrated forms of the RTE for use in analytical and numerical 

solutions. 

 

 

C.2: ANALYTICAL INTEGRATION METHODS FOR ENCLOSURES 

The unknown wall energy fluxes or temperatures along the surfaces of an enclosure are found from 

solutions of single or simultaneous integral equations. The integral equations in the formulations up 

to now are linear; that is, the unknown q, J, or T 
4 variables always appear to the first power (note that 

T 
4 is the linear variable rather than T). For linear integral equations, there are various numerical and 

analytical solution methods; these are discussed in mathematics texts.    

For some simple geometries and special conditions, the integral equations describing radiative 

transfer among surfaces may be solved analytically. Such solutions are usually limited to single-

surface or two-surface enclosures, so are not described here in detail. 

If the kernel of the integral equation is separable, that is, K(rj,rk) = Fj(rj)Fk(rk), then Fk(rk) may be 

removed from the integral over rj, possibly simplifying analytical or numerical integration. However, 

the kernel in radiation problems usually is not separable. The general theory of solution of integral 

equations using separable kernels is in Hildebrand (1992) and an application using a separable 

exponential approximation to the kernel (Usiskin and Siegel 1960), allowing reduction of the integral 

equation to a differential equation, is in Buckley (1927, 1928). 
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The variational method (Hildebrand 1992) may be applied if the kernel is symmetric, that is, K(ξ,η) 

= K(η,ξ). This approach has been used for radiation in a cylindrical tube (Usiskin and Siegel 1960) 

and for radiative exchange between infinitely long parallel plates of finite width (Sparrow 1960). 

An approximate solution may be obtained through a Taylor series expansion (Krishnan and 

Sundaram 1960, Perlmutter and Siegel 1963), which works well if the kernel ( ) − K  decays 

rapidly as ξ − η increases as for the cylindrical geometry illustrated in Figure 6.14. The integrand of 

the integral equations then becomes a series that may be truncated after a few terms and then 

integrated term by term, reducing the integral equation to a differential equation. Applications are in 

Choi and Churchill (1985) and Qiao et al. (2000). 

The method of Ambartsumian can be applied if the temperature or energy flux boundary conditions 

can be approximately described by an exponential variation or a sum of exponentials, allowing 

transformation of the integral equation into an initial value problem (Ambartsumian 1942, 

Kourganoff 1963, Crosbie and Sawheny 1974, 1975). 

The problem of finding the intensity leaving a circular opening in a spherical cavity exposed to 

external uniform energy flux incident on element dA2, qe(dA2), and with a prescribed internal 

temperature distribution T(dA1) on the cavity surface has been solved analytically (Jakob 1957, 

Sparrow and Jonsson 1962). If the internal surface of the cavity has emissivity ε, then the intensity 

leaving an element dA1* through the cavity opening in a direction is found to be 

( )
( )

( )
1 2

4
4 1 1 1 e 2 221 1

1 1
1 2

1

**
*

1 1
( ) ( )

4( )

1 1 /4

A A

T dA dA q dA dAT dA RJ dA
I dA

A R

 −  
 +        = = +

  − −  

 
       (C.8) 

All these analytical methods become intractable when multiple surfaces are present, and numerical 

solution techniques are almost always required for more realistic cases. 

C.2.1 EXACT SOLUTION OF INTEGRAL EQUATION FOR RADIATION FROM A SPHERICAL CAVITY 

Radiation from a spherical cavity as in Figure C.3a was analyzed by Jakob (1957) and Sparrow and 

Jonsson (1962). The spherical shape leads to a relatively simple integral-equation solution because 

there is an especially simple configuration factor between elements on the inside of a sphere. For the 

two differential elements dAj and dAk in Figure C.3b, 

2

cos cosj k
dj dk kdF dA

S
−

 
=


     (C.9) 

Since the sphere radius is normal to both dAj and dAk, the distance between these elements is 

S = 2Rcosθj = 2Rcosθk. Then, Equation C.9 becomes 

24

k k
dj dk

s

dA dA
dF

AR
− = =


     (C.10) 

where As is the surface area of the entire sphere. If dAj exchanges with the finite area, then 

Equation (C.10) becomes 

2 2
s

1

4 4
k

k k
dj k k

A

A A
F dA

AR R
− = = =

       (C.11) 
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Equation (C.11) is independent of dAj, so dAj can be replaced by any finite area Aj to give 

2
s4

k k
j k

A A
F

AR
− = =


      (C.12) 

The configuration factor from any area to any area is simply the fraction of the total sphere area that 

the receiving area occupies.   

 

 

 

 
Figure C.3 Geometry for radiation within spherical cavity, (a) spherical cavity with diffuse entering 

radiation qe and with surface at variable temperature T1 and (b) area elements on spherical surface. 

 

Consider the spherical cavity in Figure C.3a with a temperature distribution T1(dA1) and a total 

surface area A1. The spherical cap that would cover the cavity opening has area A2. Assume there is 

diffuse radiative flux qe (per unit area of A2) entering through the cavity opening; the qe can vary over 

A2. It is desired to compute the radiation intensity *( )lI dA  leaving the cavity at a specified location 

and in a specified direction, as shown by the arrow in Figure C.3a. The desired intensity results from 

the diffuse flux leaving *
ldA  and equals 1

*( )/ .lJ dA   The 1
*( )lJ dA  is found by applying Equation 

(6.38): 



C: INTEGRATION METHODS 
 

C-8 
 

( ) ( ) ( ) ( ) ( ) ( )
1 2

* *
4

1 1 1 1 1 1 e 2 1 1 11 1 1 2
* *1 1

d d d d

A A

J dA J dA dF q dA dF T dA
− −

− −  − −  =      (C.13) 

and an exact solution will be found. The F factors from Equation (C.9) are substituted to give 

( ) ( ) ( ) ( )
1 2

1 1 4
1 1 1 1 1 2 2 1 1 12 2

** 1 1

4 4
e

A A

J dA J dA dA q dA dA T dA
R R

−  − 
− = +  

      (C.14) 

To solve Equation (C.14), a trial solution ( ) ( )1
**

l lJ dA f dA C= +  is assumed, where *( )lf dA  is an 

unknown function of the location of 
1
*dA , and C is a constant. Substituting into Equation (C.14) gives 

( ) ( ) ( ) ( )
1 2

1 1 1 4
1 1 1 1 e 2 2 1 1 12 2 2
* *1 1 1

4 4 4
A A

f dA C f dA dA CA q dA dA T dA
R R R

−  −  − 
+ − − = +  

        (C.15) 

From the two terms that are functions of local position, ( ) ( )4
1 1 1 1

** .f dA T dA=    The remaining terms 

are equated to determine C. This gives the desired result as an exact solution: 

( )
( ) ( ) ( ) ( )

( )
1 2

1 4
4 1 1 1 1 2 221 1 1 1 1

1 2
1 1

**

*

1 1

4

1 1 /4

e
A A

T dA dA q dA dAJ dA T dA R
I dA

A R

−    
  +        = = +

  − −  

 
  (C.16) 

C.3 NUMERICAL SOLUTION METHODS FOR NONLINEAR EQUATIONS 

Most nonlinear equations for mixed-mode problems with radiation can be cast in the form 

 

 4A B C  +  =            ij j ij j i    (C.17) 

 

It is important to examine the relative values of the elements Aij and Bij. If the Aij are comparatively 

large, the problem can be treated as linear in ϑj; conversely, for large Bij, the problem can be treated 

as linear in 
4.j  When the coefficients A and B are approximately equal, other treatments are in order. 

If we define 3
ij ij ij jA A B = +  , Equation (C.17) becomes 

 4 3
ij j ij j ij ij j j ij j iA B A B A C     +  = +   =  =                        

   (C.18) 

This is a set of linear algebraic equations with coefficients *
ijA  that are variable and nonlinear. The 

equations cannot be solved by elimination or direct matrix inversion, because the *
ijA  are temperature 

dependent and thus are not known. Some numerical solution methods are now discussed. 

C.3.1 SUCCESSIVE SUBSTITUTION METHODS 

C.3.1.1 Simple Successive Substitution (SSS) 
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A simple solution method is to assume an initial set of temperatures 
( )0
j  and use them to compute 

( )( )0* .ij jA 
  

 This provides values for the elements in the matrix of coefficients, leaving the 

temperature vector [ϑj] as the unknown. Equation (C.18) is then solved for a new set of temperatures 

( )1n
j

+ 
 

 from 

( )  ( ) ( 1)n n
ij ij jA C+     =   

     (C.19) 

This process is continued until the difference between successive temperature sets is less than an 

acceptable error, indicating convergence. A difficulty is that this method depends on an accurate 

initial guess for [ϑj]. An inaccurate guess can lead to unstable iterations that may diverge rapidly. For 

an extended discussion of some of the pitfalls of SSS, see Howell (2017). 

C.3.1.2 Successive Underrelaxation 

The simple successive substitution (SSS) method can be modified to obtain convergence in many 

cases if Equation (C.17) is written as 

( )  ( ) ( 1)n n
ij ij jA C−      =   

      (C.20) 

where the ( )( )** n
ij jA   are computed at each iteration by using a modified temperature 

( ) ( ) ( 1)(1 )n n n
j j j
 − =  + −        (C.21) 

The α is a weighting coefficient, or relaxation parameter, in the range 0 ≤ α ≤ 1. When α = 1, the 

successive underrelaxation (SUR) method reduces to SSS; when α < 1, the new guess is weighted 

toward the previous guess (i.e., underrelaxed), and oscillations between iterations are damped. If 

possible, the α should be chosen or found that provides optimized convergence. Decreasing α usually 

provides slower convergence, but greater assurance that convergence will occur. Sometimes 

decreasing α somewhat will increase convergence by reducing oscillatory behavior. Values of α ≈ 0.3 

are reported by Cort et al. (1982) to often provide rapid convergence. 

 

C.3.1.3 Regulated Successive Underrelaxation 

Cort et al. (1982) proposed a method of regulated successive underrelaxation (RSUR) that allows the 

underrelaxation factor α to be chosen and modified for successive iterations. They recommend the 

following: (1) Initialize α = 1; (2) solve Equation (C.21) for ( )
* n

j  (for the first iteration, an initial 

guess ( )


0
j  must be provided); (3) solve Equation (C.20) for + 1;n

j  (4) calculate 
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( )
( 1)

1/2

2
( 1) ( )

1

n
N

n n
j j

j

++

=

 
  =  − 
  
      (C.22) 

( )
( 1) ( 1)

1/2

2

1

n n
N

j

j

R
+ +

=

 
 = 
  
       (C.23) 

and if v(n+1) > v(n) or if v(n+1) > (1/3)R(n+1), reduce α by 0.1; and (5) repeat steps (2) through (4) until 

convergence. 

Equation (C.22) checks for divergence of the solution between iterations, and Equation (C.23) is 

used to see whether the residual error after each iteration is smaller than a measure of the root-mean-

square temperature over the region of the solution. The latter check eliminates slowly oscillating but 

converging solutions that pass the test of Equation (C.22) but converge very slowly. 

Another approach is to rewrite Equation (C.17) in the form 

( ) ( )
4 4

( 1) ( 1) ( 1) ( 1)

1

(1 )

N

n n n n
ii ii i ij ij ij ii i j j

j

A B C A B D+ + + +

=

  +  = − −   +  
      (C.24) 

where δij is the Kronecker delta. An initial set of temperatures ( )


0
j  is guessed, and Di is evaluated 

based on this set. Then the ( )


1
j  are found by iterative solution of Equation (C.24) and are used to 

evaluate the next set of Di. This process is repeated to solve for ( )


n
i  until convergence. Tan (1989) 

points out that, for a given value of i, Equation (C.24) is a quartic equation with a single real positive 

root ( )+


1n
i  given by 

1/2
( 1)

1/2

2

2 ( 1) 1

n
i

y p

p

+ −
 =

− +
      (C.25) 

where 
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21 4
,

2 3

ii i

ii ii

A D
r s r

B B

    
= = +    

     

. 

Thus, for each set of Di, the ( )+


1n
i  can be found directly from the nonlinear Equation (C.24) rather than 

by an inner iteration and then can be used to evaluate new Di and continue to the next main iteration. 

This method is quite fast and can be combined with the SUR technique to determine succeeding 

approximations to provide a method that is both stable and fast. 

C.3.2 NEWTON–RAPHSON-BASED METHODS FOR NONLINEAR PROBLEMS 

C.3.2.1 Modified Newton–Raphson 

A modified Newton–Raphson (MNR) method is in Ness (1959) for the class of nonlinear problems 

encountered here. Starting from Equation (C.17), 
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 4 0ij j ij j iA B C  +  − =                  (C.26) 

an initial approximate temperature ( )


0
j  is guessed at each node. A correction factor δj is then computed 

so that 
( )0

.j jj =  +   This ϑj is used to compute a new δj, and this process is continued until δj 

becomes smaller than a specified value. The δj are found by solving the set of linear equations: 

[ ][ ] [ ] 0ij j if f + =       (C.27) 

where 

( )
4

(0) (0)

1

N

i ij ij ij j

j

f A B C

=

 =  +  −
        (C.28) 

and 

( )
3

(0)4ij ij ij jf A B= +        (C.29) 

The MNR method may not converge if a poor initial temperature set is chosen. 

7.5.3.2.2 Accelerated Newton–Raphson 

Cort et al. (1982) proposed a method in which the amount of change in ϑi at each iteration is adjusted 

to accelerate convergence. They recommended that the fij in the MNR method be replaced by 

( )
(3 )

(0)4
     0

[1 ( /3)]

ij
ij ij j

B
f A

−

= +   
− 

    (C.30) 

This effectively modifies the slope of the changes in ϑj with respect to iteration number compared 

with that used in the MNR method. For β = 0, the accelerated Newton–Raphson (ANR) method 

reduces to MNR. If β is too large, oscillations and divergence between iterations may occur. For β = 

0.175, the number of iterations to provide a given accuracy for a particular problem was reduced from 

28 using MNR to 12 using ANR, and reductions in computer time of up to 80% were obtained. A 

starting value of β = 0.15 is recommended by Cort et al. 

7.5.3.3 APPLICATIONS OF THE NUMERICAL METHODS 

Results using the previous methods were compared in Cort et al. (1982) for some typical radiation–

conduction problems with temperature-dependent properties and internal energy generation. 

Consideration was limited to surfaces with radiative exchanges to black surroundings at a single 

temperature, and the solutions were by finite elements. Because the example problems in this section 

showed that even complicated radiation–conduction–convection problems with multiple surfaces 

reduce to the same general form of Equations (C.17), the conclusions probably apply to a broader 

class of problems than was studied. In Costello and Shrenk (1966), a linearized solution is proposed 

that speeds convergence over the MNR method. For problems that are either conduction or radiation 
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dominated or where both modes are important, the method performed well, providing a factor-of-ten 

improvement in solution speed. It was found that the SUR method gave convergence with the fewest 

iterations and the least computer time; RSUR was useful to find the optimum value of the relaxation 

parameter α for use in the SUR method. For the Newton–Raphson method, ANR was always faster 

than MNR, but neither method was as fast as SUR. 

In Howell (1992, 2017), the convergence ranges and behavior of equations of the form of 

Equations (C.17) are discussed, and the various solution methods of this chapter are examined. 

Nonlinear equations of this type can have behavior characterized by bifurcations and chaos of 

successive iterations so that steady solutions carried out by SSS, SUR, etc., may not converge. This 

is true whether the equations are cast as radiation-dominated or first-order temperature-dominated or 

the equations used are in mixed form such as Equation (C.18). Decreasing the relaxation factor 

extends the range of convergence, but often will not yield a solution for some ranges of parameters 

without unacceptable computer time. For conduction–radiation problems, bifurcation–chaos behavior 

results from the numerical method chosen and the equation form and does not imply that multiple 

physical solutions can exist. However, when there is coupling between radiation and the flow field, 

as in combined radiation and free convection, multiple physical steady-state solutions may exist. The 

particular flow configuration reached in a steady state analysis may depend on the initial conditions 

chosen and the set of velocity and temperature fields that are traversed in reaching steady state. In 

some cases, no steady solution is reached; it may be possible to solve for the steady-state solution by 

using a fully transient solution that proceeds to the final steady state from physically specified initial 

conditions. 

Numerical solution techniques for steady-state and transient combined-mode problems with 

surface–surface radiative exchange are examined and discussed by Hogan and Gartling (2008). Three 

techniques that sequentially solve for radiative transfer followed by solution of the energy equation 

with a radiative source term are compared with a fully coupled solution. For the two example 

problems studied, the fully coupled method always produced the most accurate solution, although 

execution time made it unattractive for very large problems. A semi-implicit technique with a Newton 

type of update appeared to be the best choice for very large problems. 

The finite-difference and finite-element numerical procedures that have been described used 

radiative enclosure theory with finite or infinitesimal areas to obtain a set of simultaneous equations 

with configuration factors for radiative exchange between surface areas. Convection was specified in 

terms of an energy transfer coefficient for each area; for example, for radiation exchange inside a tube 

with a flowing transparent gas, the energy transfer coefficient inside the tube is obtained from -

available results from tube flow analyses or experimental correlations. For some situations, 

however, convection is quite dependent on the surface temperatures, such as for free convection, or 

the geometry is complex so that convective energy transfer correlations are not available with desired 

accuracy. In these cases, analyses have been made where convection is solved simultaneously with 

radiation as the flow and surface temperatures are strongly coupled; conduction may also be included, 

such as for free convection and radiation from a cooling fin as discussed in Section 7.4.3 of the book. 

To solve for the convection energy transfer, the methods of computational fluid mechanics are used. 
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Another consideration is that the analysis may not use configuration factors. The radiative exchange 

in an enclosure can be computed directly by a ray-tracing technique such as a Monte Carlo method 

(Section 10.5 of the book). This may be necessary if the surfaces are not diffuse so that configuration 

factors do not apply. The discrete ordinates method, discussed in Section 10.3, was developed for 

enclosures filled with a medium that is not transparent, but rather absorbs, emits, and scatters 

radiation. If radiative participation by the medium is omitted, the method can be applied to enclosures 

containing a transparent medium such as a convecting transparent gas. In this method, the angular 

directions from each surface element are divided into a finite number, and radiation is followed along 

these discrete directions to evaluate the radiative exchange. In Tan et al. (1998), discrete ordinates 

are used in combination with the SIMPLE computer algorithms developed for computational fluid 

mechanics (Patankar 1980) to simultaneously solve the mass, momentum, and energy equations along 

with radiation transfer between surfaces. 

For natural convection combined with radiation, many computational methods have been used for 

simultaneously solving the fluid flow and energy equations with radiative exchange. In Zhao et al. 

(1992), free convection and radiation were analyzed for heated cylinders in a rectangular enclosure. 

In Dehghan and Behnia (1996), net radiation enclosure analysis was used for the radiative transfer, 

and the flow and energy equations were placed in finite-difference form and solved with a pseudo 

transient method to analyze free convection in a cavity with a local heated area on one vertical wall. 

A vented cavity with a discrete energy source was analyzed by Yu and Joshi (1999) using the 

numerical methods from Patankar (1980); this study included combined radiation exchange, 

conduction, and natural convection, with the gas in the cavity being transparent. Free convection of 

transparent air in a heated vertical channel with one or more vents in one wall was analyzed by 

Moutsoglou et al. (1992). The flow and energy equations were solved by using finite-difference 

computational methods as developed by Patankar and Spalding (1972) and van Doormall and Raithby 

(1983).  
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D: COMBINED MODE RADIATION TRANSFER  

RADIATION COMBINED WITH CONDUCTION 

First, consider the boundary conditions for the limiting situation of radiation being dominant so that 

conduction and convection effects are neglected. In this limit, a temperature discontinuity (“jump”) 

occurs at a solid boundary (Section 10.2). When conduction and/or convection are present, the 

temperature is continuous at the boundaries, although the temperature gradient is generally not. For 

very small conduction and/or convection relative to radiation, the temperature gradients may be steep 

near a wall and the solution approaches the temperature jump condition. In this section, conduction 

is included with radiation. The addition of convection is in subsequent sections. 

There are several cases where energy is transferred within a translucent medium by only radiation 

and conduction. These usually involve solid or highly viscous media, so convection in the medium is 

not important. Glass can absorb significant amounts of radiation in certain wavelength regions (see 

Figure 4.11 and Section 8.6). At elevated temperatures, there can be appreciable emission within 

glass. Glass is optically dense in the infrared region, and absorption and emission require 

consideration of radiative transport.  

Radiation can be a significant part of the energy transfer in shields for atmospheric re-entry of 

spacecraft, fibrous insulation materials, foam insulations, high-temperature porous insulating 

materials, silica aerogels, gas-fluidized beds, and radiation-induced curing of thermoset filament-

wound composites.  

Throughout this section, the theory is for materials with n ≈ 1, such as a radiating gas in a chamber 

or a gas containing suspended particles in a furnace or a hot exhaust plume. The effects of larger 

refractive index are considered in Chapter 11 for glass windows, translucent ceramic coatings, thin 

films, and other applications. 

ENERGY BALANCE 

For combined radiation and conduction in an absorbing–emitting and scattering medium, the energy 

Equation (9.2) is used. This is solved subject to the boundary conditions to obtain the temperature 

distribution in the medium; energy flows can then be found. Omitting convection, viscous dissipation, 

and volume expansion terms, Equation (9.2) becomes 

r( )
T

c k T q
t


 =   − +


q       (D.1) 

If the ∇⋅qr is substituted from Equation (9.3), the local energy balance is 

( ) ( ) ( ) ( ) ( )
i 0

4

b i i

0 0

4
T

c k T q T I T d T I d d
t =

 


   


= =

 
 =   + −    +               (D.2) 

The final radiation absorption term in Equation (D.2) depends on both the local temperature and on 

the surrounding radiation field. 
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PLANE LAYER WITH CONDUCTION AND RADIATION 

Absorbing–Emitting Gray Medium without Scattering 

A layer of translucent conducting–radiating medium is between parallel black walls at temperatures 

T1 and T2, as in Figure 10.3. The medium is gray and has a constant thermal conductivity k and a 

constant absorption coefficient κ. The steady energy transfer relations will be developed without 

scattering.  

For 1D energy conduction and constant k, the ∇⋅(k∇T) reduces to k(d2T/dx2), and ∇⋅qr becomes 

dqr,x /dx. The temperature distribution is steady, ∂T/∂t = 0, and there is no internal energy generation, 

0.q =  Then, with τ = κx, Equation (D.2) reduces to 

( )2
r

2

dqd T
k

dd


 =


      (D.3) 

For a plane layer with diffuse–gray boundaries, dqr/dτ is given by Equation (9.24). For black walls, 

the boundary fluxes are 
4

1 1J T=    and 
4

2 2J T=   . For zero scattering in a gray medium, 

( ) ( )4ˆ /  I  =     from Equation (9.22). Then Equation (D.3) becomes, with τD = κD, 

( ) ( ) ( ) ( ) ( )
D2

4 4 4 4
1 2 2 2 D 12

* 0

2 2 2 * * * 4



 =

 = −   −   −  −    −   +  
 

d T
k T E T E T E d T

d
     (D.4) 

The boundary conditions for T are T(τ=0) = T1 and T(τ=κD = τD) = T2. Define the dimensionless 

quantities ϑ = T/T1, ϑ2 = T2/T1, and NCR = kκ/4σT1
3 to give 

( ) ( ) ( ) ( )
D2

4 4 4
CR 2 2 2 D 12

* 0

( ) 1
( ) 2 * * *

2

d
N E E E d

d



 =

  
 =   −  +   −  +    −  

  
 

         (D.5) 

This is the energy equation for ϑ(τ); the boundary conditions are ϑ(0) = 1 and ϑ(τD) = ϑ2. The solution 

depends on the parameters NCR, τD, and ϑ2. 

The conduction–radiation parameter (or Stark number, sometimes also called the Stefan number) 

3
CR /4 jN k T   for a nonscattering medium is based on the jth temperature. The NCR does not directly 

give the relative values of conduction to emission because the ratio of these values depends on both 

temperature difference and absolute temperature level. When scattering is included, the NCR includes 

the scattering coefficient to become 
3

CR s( )/4 jN k T +  and the source term relation is modified. 

The combined radiation and conduction energy transfer across the translucent layer can be obtained 

from the temperature distribution. From energy conservation, q is independent of location τ for the 

conditions considered where 0q = , so the evaluation for q can be done at any τ location. Equation 

(9.24) gives the net radiative energy flux in terms of the temperature distribution across a gray gas 

between black walls. This radiative flux relation was obtained for convenience at τ = 0. In addition, 
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at the same location, there is now a conduction flux −k(dT/dx)|x = 0 = −kκ(dT/dτ)|τ=0, so the energy flux 

relation becomes, in terms of the unknown temperature distribution, 

D

4 4 4
1 2 3 D 2

0
0

2 ( ) 2 ( *) ( *) *
dT

q k T T E T E d
d



=

= −  +  −   −    
     (D.6) 

On the right, the first term is the conduction away from wall 1 by the medium, the second is the 

radiation leaving black wall 1, the third is the radiation leaving wall 2 that is then attenuated by the 

translucent medium and reaches wall 1, and the last term is the radiation from the medium to wall 1. 

In dimensionless form, 

4 4
CR 2 3 24

1 0
* 0

4 1 2 ( ) ( *) ( *) *

D

D

q d
N E E d

dT



=
 =

 
 = − + −   +    

  
 

    (D.7) 

 

Figure D.1 Dimensionless temperature distribution in gray gas between infinite parallel black plates 

with conduction and radiation. Plate temperature ratio ϑ2 = 0.1; optical spacing τD = 1.0. (From 

Viskanta, R. and Grosh, R.J., J. Heat Trans., 84(1), 63, 1962b.) 

Absorbing–Emitting Medium with Scattering 

Scattering is now added to the absorbing and emitting plane layer with energy conduction. The 

medium is gray and scattering is isotropic. Scattering is conveniently included by using the radiative 

source function. For isotropic scattering the phase function Φ(λ, Ω) = 1, so for gray properties 

Equation (9.10) applies, and with τ = (κ + σs)x the energy Equation (D.1) becomes 

2
4

2

(1 )
4 ( ) ( )

d T
k T I

d

−    =   −  
 

     (D.8) 
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The ˆ( )I   is found by using the integral Equation (9.16) that gives, for a plane layer with black 

boundaries at uniform temperatures T1 and T2, 

( ) ( ) ( ) ( ) ( ) ( )
D

4 44
1 2 2 2 D 1

* 0

* * *ˆˆ 1
2

T E T E I E dI T



 =

 
     +   −  +    −    = −    +  

  
 

     (D.9) 

Equations (D.4) and (D.6) are placed in dimensionless form by using the same quantities as in 

Equation (D.5) and by using 
4

1Î T   as a dimensionless source function. The 
3

CR s 1( ) 4N k a T= +    

includes the scattering coefficient, and the scattering albedo ω is an additional parameter. The 

boundary conditions are the same as given after Equation (D.5). The solution is obtained by numerical 

integration and iteration, and results are in Viskanta (1965). 

PN METHOD FOR RADIATION COMBINED WITH CONDUCTION 

The PN method provides an expression for the local radiative source that is differential in form and 

can be incorporated into the energy equation in differential form that includes convection and/or 

conduction. The PN method thus can fit into whatever grid size is used for numerically solving the 

energy equation. The procedure for a combined radiation and conduction solution is in the following 

example. 

Example 10.6 

A plane layer of radiating and isotropically scattering medium with constant thermal conductivity k, constant radiative 

properties, optical thickness D, and albedo  is between infinite parallel diffuse–gray walls of emissivity εw at temperatures Tw1 

and Tw2. The medium has a uniform internal energy source .q  Derive the relations needed to obtain the energy flux to each 

bounding wall and the temperature distribution in the medium using the P1 approximation. 

   With conduction, radiation, and internal energy generation, the energy Equation (10.2) is    − + =( ) 0rk T qq  or, using a 

summation form for the radiation and conduction fluxes, 

= =

 
+ =

  
3 3

, ,

1 1

r i c i

i ii i

q q
q

x x
      (D.1.1) 

For the present 1D problem, since qr = I(1), where I(1) is the first moment of the intensity, the energy equation can be put in the 

dimensionless form 

( )


= +
  

1 2

2
1 1

4
D

dI d S
N

d d
CR       (D.1.2) 

where 
 + 

=
 3

1

( )

4

s

w

k
N

T
CR , =

 4
1w

qD
S

T
,  =  + 1 1( )s x ,  =  + ( )D s D, 

( ) ( )
= 

1 1 4
1/ wI I T , and  = 1/ wT T . 

This is the defining equation for the derivative of (1)I . In the pure-radiation solution of Example 10.2 without internal energy 

sources, the derivative of the first moment in Equation (10.6.2) was set equal to zero, because for these conditions 

= (1) 4
1/r wI q T  is constant and 

( )
 =

1
1/ 0dI d . This is not the case here with conduction and an internal energy source included. The 

presence of a second derivative of dimensionless temperature requires two boundary conditions for solving the energy 

equation: ϑ(1 = 0) = 1 and ϑ( 1 =  D) = Tw2/Tw1. 
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To proceed with the solution, two coupled second-order differential equations are derived for (0)I  and (1)I  (the nondimensional 

intensity integrated over all solid angles and the radiative flux). The first is obtained by equating Equation (10.6.1) and the first 

moment differential Equation (10.6.2) in the PN method. For 1D, this gives 

( )
( )

+ −  = −
−    − 

2
04

2
1

4
4

1 1D

N d S
I

d

CR       (D.1.3) 

where = (0) (0) 4
1/ .wI I T  The second equation is found by substituting the closure equation (Equation (10.44)) into the second-

moment differential equation (Equation (10.46)) to obtain the relation between (0)I  and (1)I : 

( ) ( )
( )

= = −
 

11 0
1

1 1

1

3

dI dI
I

d d
       (D.1.4) 

Now, Equation (D.1.4) is differentiated with respect to 1, and the result is substituted into Equation (D.1.2) to give 

( )


+ + =
  

02 2

2 2
1 1

3
12 0

D

d I d S
N

d d
CR       (D.1.5) 

Equations (D.1.3) and (D.1.5) can be solved simultaneously for 0 ( ) and .I . They can be combined into a single fourth-order 

equation in t  by differentiating Equation (D.1.3) twice with respect to 1  and the result is substituted into Equation (D.1.5) to 

eliminate the second derivative of (0)I . The resulting fourth-order equation, or the two second-order equations, requires two 

boundary conditions in addition to the known boundary surface temperatures. These are generated from Equation (10.47) using 

Equation (10.2.9) to eliminate J, which results in 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 
 = = − −  = 

 
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 
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1 2 1

1 1 1
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    (D.1.6) 

or 

( ) ( ) 
=   − 

 

40 11 1 1

4 2
wi

w
i iI I        (D.1.7) 

where the i subscript denotes walls 1 or 2 and the positive sign applies at wall i = 2. Inserting Equation (D.1.4) to eliminate (1)I  

results in the final boundary relations for (0)I : 

( )
( )

 
  = − −  

      − 
 

0
0 4

1

3
4

1 1
4

2
i

w

wiiI
d

Id      (D.1.8) 

These can be directly applied as the boundary conditions for Equation (D.1.5). The problem is completely specified with two 

second-order differential Equations (D.1.3) and (D.1.5) and the four boundary conditions, the specified boundary temperatures 

for Equation (D.1.3), and the conditions (i = 1, 2) in Equation (D.1.8) for Equation (D.1.5). An iterative numerical solution can be 

used to obtain 
( )0

1 1  ( ) and ( )iI . Then 
( )1
iI  at the boundaries (i = 1, 2) is found from Equations (D.1.6), which gives the desired 

radiative fluxes at the boundaries. 

The total energy transfer also requires the amount of energy conduction. Since the temperature distribution has been 

determined, this can be found by evaluating −kdT/dx at the boundaries. 

 

Diffusion Method for Combined Radiation and Conduction 

This approximate method solves the energy equation with the coupled energy transfers by conduction 

and radiation; radiative diffusion is included simultaneously with diffusion by energy conduction. As 
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shown in the derivation in Section 10.2, the diffusion energy flux relation for radiative transfer has 

the same form as the Fourier conduction law. By using the Rosseland mean attenuation coefficient 

defined in Equation (10.27), the radiative flux vector for an absorbing, emitting, and isotropically 

scattering medium can be written from Equation (10.26) as 

3

r b

R R

4 16

3 3

T
E T


= −  = − 

 
q      (D.10) 

where βR can be a function of position. Then, the local energy flux vector by combined radiation and 

conduction is 

3

r c

R

16

3

T
k T

 
= + = − +  

 
q q q      (D.11) 

This can be used in energy Equation (9.1). For example, in 2D rectangular coordinates, with internal 

energy sources, the transient energy equation is 

3 3

P

R R

16 16
( , )

3 3

T T T T T
c k k q x y

t x x y y

            
 = + + + +      

            

       (D.12) 

The energy transfer is now analogous to energy conduction, with an effective thermal conductivity 

3

R

16

3

T
k

 
+ 

 
 that depends on temperature. 

To obtain the temperature distribution in the medium, an equation such as Equation (D.12)  is solved 

subject to the initial and boundary conditions. The boundary conditions would often be specified 

temperatures of the enclosure surfaces. However, as discussed earlier, near a boundary the diffusion 

approximation may not be accurate as the radiation is not near- isotropic.  

For pure radiation, a temperature jump was introduced to join the diffusion solution in the medium 

to the wall temperature. For combined conduction–radiation, a similar concept was introduced by 

Goldstein and Howell (1968) and Howell and Goldstein (1969). By using asymptotic expansions to 

match linearized solutions for intensity, flux, and temperature near the wall with the diffusion solution 

for these quantities far from the wall, an effective jump condition was derived. As shown in Figure 

10.18, the jump gives the boundary condition T(x → 0) that the diffusion solution must have if the 

diffusion solution is to extend to the wall. The jump is given in terms of the jump coefficient ψ, which 

is a function only of the conduction–radiation parameter 
3

CR 1/4N k T=   . In terms of quantities at 

wall 1, ψ1 is given by 

4 4
1

1

r,1

( 0)T T x

q

  − →  =       (D.13) 

where 

qr, 1 is the radiative flux at the boundary as evaluated by the diffusion approximation 
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T1 is the wall temperature 

T(x → 0) is the extrapolated temperature in the medium at the wall, which is the effective jump 

temperature to be used in the diffusion solution 

The ψ1 is computed from the relations of Goldstein and Howell as 

1

CR1
1 3

0

3 1 1 2 1
tan where ( ) ln

4 ( ) 12

N
d−  − 

 =    = − − 
     +      (D.14) 

For large NCR, the jump effect can be neglected, as energy conduction dominates over radiation effects 

near the wall. 

 

Figure D.2 Use of effective temperature jump as boundary condition for diffusion solution in 

combined conduction and radiation. 

 

Figure D.3 Temperature jump coefficient for combined conduction–radiation solutions by the 

diffusion method. (From Goldstein, M.E. and Howell, J.R., Boundary conditions for the diffusion 

solution of coupled conduction-radiation problems, NASA TN D-4618, 1968 (for ε = 1); Larsen, M. 

E., Use of contact resistance algorithm to implement jump boundary conditions for the radiation 

diffusion approximation, Proceedings of HT2005: 2005 ASME Summer Heat Trans Conference, 

Paper HT2005–72561, San Francisco, CA, July, 2005 [for ε ≠ 1].) 
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Larsen (2005) extended the conduction/radiation slip condition to boundary conditions for gray 

opaque surfaces by numerically solving a range of conduction/radiation cases using the zone method 

(Section 10.4) and determining the slip condition that results. The numerical predictions for ε = 1 

agree well with the analytical solution of Equation (D.14). The resulting slip coefficient Ψ versus N1 

from the analytical solution of Goldstein and Howell for black walls and for gray boundary emissivity 

from Larsen is shown in Figure D.3. 

   The combined-mode diffusion solution yields the temperature distribution in the medium. The 

result is 

( ) ( )

( )

4
CR 2 1

4
D 1 22 CR 2

1 3 1 3 /4

3 /41 3 1

N

N

 −   + −    +   =
 +  + −  + − 

    (D.15) 

Temperature profiles are in Figure D.4. For NCR → 0 and NCR → ∞, the diffusion–jump method goes 

to the correct limiting solutions. The diffusion method provides accurate temperature distributions 

when the layer is optically thick and there is sufficient energy conduction to minimize temperature 

jump effects at the boundaries. 

Within their limits of applicability, diffusion methods provide a useful interpretation of the 

conduction–radiation parameter. The ratio of molecular conductivity to radiative conductivity is 

k/(16σT 3/3βR) = (3/4)(kβR/4σT 3) = (3/4)NCR. Therefore, in the diffusion limit, NCR is a direct measure 

of the conduction/radiation conductivity ratio and consequently in this limit is also a direct measure 

of the ratio of the energy transferred by conduction and radiation. 

 

Figure D.4 Comparison of temperature profile by exact solution with diffusion-jump approximation. 

Wall temperature ratio T2/T1 = 0.5; wall emissivities ε1 = ε2 = 1.0. (a) Optical thickness τD = 1; (b) 

optical thickness τD = 10, conduction-radiation parameter NCR = 0.02916. (From Viskanta, R. and 

Grosh, R.J., Int. J. Heat Mass Trans., 5, 729, 1962a.) 

The Rosseland mean attenuation coefficient for the entire range of λ should not be used as the criterion for 

optical thickness. It may have a large value, but the spectral attenuation coefficient may be small in certain 

spectral regions that allow significant radiant transmission. The use of Rosseland mean coefficient may then 

lead to large errors. An approach for the optically thick regions is to define the wavelength bands in which the 
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spectral attenuation coefficient is everywhere large and evaluate a Rosseland mean for each of these spectral 

regions.  

 

COMBINED RADIATION, CONDUCTION, AND CONVECTION  

The laminar boundary layer including radiative transfer using the optically thin and thick 

approximations is a good illustration (Figure D.5). The flowing medium absorbs and emits radiation, 

but scattering is not included; the wall at T1 is black. 

 

Figure D.5 Boundary layer flow over a flat plate, with free-stream velocity, u0. 

OPTICALLY THIN THERMAL BOUNDARY LAYER 

To analyze laminar-flow energy transfer on a flat plate, an expression is needed for the radiative 

source term –∂qr, y/∂y in the energy equation. Within the boundary layer, it is assumed that the thermal 

conditions are changing slowly enough in the x direction, as compared with the y direction, so the 

conditions contributing to qr, y at a specific x, say x+, are all at that x+ and hence are at the temperature 

distribution T(x+, y). Then ∂qr, y /∂y can be evaluated using 1D forms of relations such as Equations 

(D.2) and (D.3). For only one bounding wall in Equation (D.2), there is only a T1 term, and the upper 

limit of the integral is extended to infinity. Also, the T 4(τ*) is replaced by T4(x, τ*) to emphasize the 

approximation for the radiation term that the temperatures surrounding any position x+ are all assumed 

at T(x = x+, y). Then, for flow over a black wall, the laminar boundary layer energy equation for T(x, 

y) becomes, with the addition of the radiative energy terms, 

( ) ( ) ( )
2

4 4 4
P 1 2 12

* 0

4 2 , * * *
T T T

c u v k T T E T x E d
x y y



 =

    
  + = −  +   +   −   

       
    (D.16) 

where τ = κy and there is no scattering and cP is the specific heat of the gas. 

The temperature field is considered as composed of two regions. Near the wall in the usual thermal 

boundary layer of thickness δ that would be present in the absence of radiation, there are large 

temperature gradients, and energy conduction is important. This layer thickness is usually small; 

hence, for the formulation in this section, it is assumed optically thin so that radiation passes through 

it without attenuation. For larger y than in this layer, temperature gradients are small and energy 

conduction is neglected compared with radiative transfer.  

In the outer region, the velocity in the x direction has the free-stream value u0, and with the neglect 

of energy conduction in this region, the boundary layer energy equation reduces to 
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( ) ( ) ( )4 4 4
P 0 1 2 1

* 0
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x



 =

 
  = −  +   +   −  

  
 

     (D.17) 

To obtain an approximate solution by iteration, substitute the incoming free-stream temperature T0 

for the temperature on the right side as a first approximation and then carry out the integral to obtain 

a second approximation. For the outer region, to first-order terms, 

( ) ( )4 4
0 1 0 2

P 0

2
( , )

x
T x y T T T E y

c u


= +  −  + 


     (D.18) 

where T = T0 at x = 0. 

At the edge of the thermal layer, κy = κδ, which is small, so that Ε2(κδ) ≈ E2(0) = 1. Hence, at y = 

δ, Equation (D.18) becomes 

( )4 4
0 1 0

p 0

2
( , )

x
T x T T T

c u


 = +  − +


      (D.19) 

Equation (D.19) is the edge boundary condition that the outer radiation layer imposes on the inner 

thermal layer. The T(x, δ) to this approximation increases linearly with x.  

To solve the boundary layer equation in the inner thermal layer region, the last integral in Equation 

(D.17) is divided into two parts, from τ = 0 to κδ and from τ = κδ to ∞. The first portion is neglected 

as the thermal layer is optically thin, and the second is evaluated by using the outer solution Equation 

(D.18). By retaining only first-order terms, the boundary layer energy equation is reduced to 

( )
2

4 4 4
1 02

2
2

p

T T T
u v T T T

x y cy

   
+ =  + + −
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    (D.20) 

The boundary conditions are given by Equation (D.18) at y = δ, and the specified wall temperature T 

= T1 at y = 0. The solution is not developed further here.  

OPTICALLY THICK THERMAL BOUNDARY LAYER 

At the opposite limit from the previous section, if the thermal layer has become very thick or the 

medium is highly attenuating, the boundary layer can be optically thick. The analysis is then 

simplified, as the diffusion approximation can be employed. From Equation (D.10), radiative 

diffusion adds a radiative conductivity to the ordinary thermal conductivity. Then, the laminar 

boundary layer energy equation becomes 

3

p

16

3

T T T T
c u v k

x y y y

       
 + = +   

        

     (D.21) 

With the assumption of constant fluid properties, the momentum and continuity equations do not 

depend on temperature; consequently, the flow is unchanged by energy transfer. The velocity 
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distribution is given by the Blasius solution in terms of a similarity variable 0 /y u x =  . The  

under the square roots is the kinematic viscosity. The stream-function and velocity components are 

0
0 0

1
( ), ,

2

df u df
xu f u u v f

y d x x d

   
 =   = = = − =  − 
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   (D.22) 

where the function f(η) is in Lee et al. (1990). These quantities are substituted into Equation (D.21), 

giving 

3

CR

Pr 4
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d d d
f

d d N d

    
− = +  
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     (D.23) 

where ϑ = T/T0 and
3

CR 0/ 4N k T=   ; NCR is the conduction–radiation parameter. The boundary 

conditions that were used in the numerical solution are ϑ = ϑ1 = T1/T0 at η = 0, and ϑ = 1 at η = ∞. To 

be more precise, a temperature jump condition from the use of radiative diffusion should be used at 

the wall.  

NATURAL CONVECTION FLOW, RADIATIVE ENERGY TRANSFER, AND STABILITY 

When natural convection is significant, buoyancy appears in the momentum equation while the 

continuity and energy equations are unchanged.  

For fully developed flow in a tube, for example, the momentum equation is 

f

1dP d du
g r

dx r dr dr

 
+  =   

 
     (D.24) 

This must be solved in conjunction with the energy equation, as the buoyancy term ρg is temperature 

dependent  

RADIATION INTERACTIONS WITH TURBULENCE 

Radiation is coupled with turbulence in absorbing–emitting media. This was first recognized by 

Townsend (1958). The coupling is through the radiative flux divergence in the energy equation, which 

affects the local temperature and, importantly for combustion problems, the local species 

concentrations and reaction rates, which are quite temperature dependent. The turbulent fluctuations 

in these quantities also affect the local radiative properties. In addition, the fluctuation in local 

temperatures around the local mean can cause a very distorted distribution of local fourth-power 

temperatures, which in turn affects local emission of radiation and causes radiative emission to be 

greater than would be predicted using a local fourth-power temperature based solely on the local 

mean. Another factor to consider in mixed-mode problems! 
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E: COMMERCIAL CODES FOR RADIATION 

E.1 CODES FOR CONFIGURATION FACTORS 

Many computer programs are available that use one or more of the methods outlined in Chapter 5 of 

the text for numerical calculation of configuration factors  (see Section E.3 of this Appendix for web 

addresses.) Examples are FACET (Shapiro 1983), which uses area integration and contour 

integration; VIEW (Emery 1986), which can be used with the NASTRAN thermal analysis code; a 

program that relies on the computer-graphical analog to the unit-sphere method (Alciatore et al. 

1989), and VIEW3D. The latter program provides factors between a differential element and an 

arbitrary 3D object. The program TSS (Thermal Simulation System, Chin et al. 1992), developed 

under NASA sponsorship, incorporates an advanced graphical user interface for displaying 

configurations. The CHAPARRAL program (Glass 1995) incorporates FACET for 2D factors and 

uses the hemicube method for computing 3D factors in very large surface element arrays. Many 

commercially available thermal analysis programs such as COMSOL, FLUENT, FIDAP, NEVADA, 

and the freeware program OpenFOAM also incorporate configuration factor computation using 

various methods, sometimes with choices among methods. The general code MATLAB has a plug-

in module for configuration factors that uses contour integration to get factors between polygons in 

any configuration. 

These and other computer codes provide a means to generate configuration factors for complex 

geometries and are invaluable for radiative analyses. Their accuracy can be assessed by comparison 

of computed results with the analytical expressions developed here for simpler geometries that can 

be used for test cases. Several different numerical methods for calculating configuration factors in 

complex configurations are compared by Emery et al. (1991) for computing speed, accuracy, and 

convenience. The geometries range from surfaces almost unobstructed in their view, to highly 

obstructed intersecting surfaces. The methods compared include double integration, Monte Carlo, 

contour integration, and projection techniques. If the view is not too complex, methods based on 

contour integration are found to be successful. The advent of massively parallel computers is making 

Monte Carlo methods (Section 10.5 of the text) particularly attractive for computing configuration 

factors. Walker et al. (2010, 2012) and Walker (2013) have examined the use of parallel Monte Carlo 

using either standard central processing units (CPUs) or graphical processing units (GPUs) and find 

good speed and accuracy in comparison with finite-element-based numerical integration for 

computing configuration factors for complex geometries. They employ superimposed primitives for 

fast rendering of many common objects. 

 

E.2: CFD-BASED CODES 

Most of the major commercially available computational fluid dynamics (CFD) codes employ 

one or more choices of methods for handling radiative transfer within a participating medium. For 

example, the ANSYS CFD code packages FLUENT and CFX between them provide choice from 

among surface–surface, diffusion, P1, discrete transfer, discrete ordinates, and Monte Carlo solvers. 

The COMSOL built-in Heat Transfer module incorporates spectral surface properties for surface-

surface exchange in simple geometries, and uses the Rosseland approximation, P1 approximation or 

the discrete ordinate method (DOM) for radiation in participating media. OpenFOAM, a free online 

CFD code includes P1 and finite volume models, plus a configuration factor calculator for transparent 

medium problems.  

Various models may be included for treating anisotropic scattering and spectral medium 

property variations, although these features are not available for all solvers. These and competing 
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codes continue to add features and capabilities, and careful comparison is warranted of the required 

capabilities for a problem or application.  

 

E.3: AVAILABLE ON-LINE CODES AND DATABASES (Links checked as of 8/25/2019) 

On-line resources are available for aid in computing many useful functions for radiation. These 

include: 

 

CONFIGURATION FACTORS BETWEEN SURFACES:  

 FACET (Shapiro et al. 1983): www.oecd-nea.org/tools/abstract/detail/nesc9578 

 VIEW (Emery 1986): https://bit.ly/2kOYJjO 

 VIEW3D (Walton 1986): www.View3d.sourceforge.net 

 VIEW FACTORS (Lauzier): Plug in module to MATLAB:      

 https://www.mathworks.com/matlabcentral/fileexchange/5664-view-factors  

 Catalog (Howell, 1982 online: More than 350 factors, many with calculator): 

 www.ThermalRadiation.net/indexCat.html  

 

LINE-BY-LINE SPECTRAL DATA 

 HITRAN 2016 (Gordon et al. 2017): www.cfa.harvard.edu/hitran// 

 HITEMP 2010 (Rothman et al. 2013): https://hitran.org/hitemp/ 

 SPECAIR (Laux 2002) : www.specair-radiation.net/ 

 GEISA (Jacquinet-Husson et al. 2017): 

  https://geisa.aeris-data.fr/line-transition-parameters-2019/ 

 NIST Atomic Spectra (Kramida et al. 2012): https://www.physics.nist.gov/asd 

GAS EMITTANCE FOR CO2, H2O, CO AND THEIR MIXTURES 

 Alberti et al. (2018), Spread sheet under “Supplementary Data” at:      

            doi.org/10.1016/j.jqsrt.2018.08.008 

SCATTERING 

 References to scattering literature and codes: https:www.scattport.org/index.php 

 Mie scattering calculator (Prahl,2009) : https://omlc.org/calc/mie_calc.html  

 T-matrix for irregular particles (Mishchenko et al. 2013): at   

 https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html  

  OpenDDA: Discrete dipole approximation for Agglomerates, (McDonald et al. 2009):   

  www.opendda.org 

  ADDA: Discrete dipole code for agglomerates, (Yurkin and Hoekstra 2011): 

   https://github.com/adda-team/adda 
 Add-on package for MATLAB (Nieminen et al. 2007):

 www.physics.uq.edu.au/people/nieminen/software.html 
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G: A HISTORY OF THERMAL RADIATION AND SHORT BIOGRAPHIES  

G.1 HISTORY OF THERMAL RADIATION 
 

 The historical development of the blackbody relations differs from the sequence in which they are presented 

in Thermal Radiation: An Introduction. The derivation of the approximate spectral distributions of Wien and 

of Rayleigh and Jeans, the Stefan–Boltzmann law, and Wien’s displacement law are all presented there as 

logical consequences of the fundamental spectral distribution of intensity derived by Max Planck. However, 

these relations were formulated prior to publication of Planck’s work (1901) and were originally derived 

through complex thermodynamic arguments (see the Timeline following the biographies below.) 

Joseph Stefan (1879) proposed, after study of some experimental results, that emissive power was related to 

the fourth power of the absolute temperature of a radiating body. His student, Ludwig Eduard Boltzmann 

(1884), was able to derive the same relation by analyzing a Carnot cycle in which radiation pressure was 

assumed to act as the pressure of the working fluid. 

Wilhelm Carl Werner Otto Fritz Franz (Willy) Wien (1894, 1896) derived the displacement law by 

consideration of a piston moving within a mirrored cylinder. He found that the spectral energy density in an 

isothermal enclosure and the spectral emissive power of a blackbody are both directly proportional to the fifth 

power of the absolute temperature 

when “corresponding 

wavelengths” are chosen. He later 

derived his spectral distribution of 

intensity through thermodynamic 

argument plus assumptions 

concerning the absorption and 

emission processes (1896). Lord 

Rayleigh (1900) and Sir James 

Jeans (1905) based their spectral 

distribution on the assumption that 

the classical idea of 

equipartitioning of energy was 

valid. 

Careful measurements of the 

blackbody spectral distribution by 

Otto Lummer and Ernst 

Pringsheim (1900) (and some 

theoretical considerations) 

indicated that Wien’s expression 

for the spectral distribution was 

invalid at high temperatures and/or 

large wavelengths. This led Planck 

to an investigation of harmonic 

oscillators that were assumed to be 

the emitters and absorbers of 

radiant energy. The figure (left) 

from Lummer and Pringsheim 

shows, at the lower right, the 

disagreement between the 

Rayleigh, Wien, and experimental 

data at large T values. Various 

further assumptions about the 
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average energy of the oscillators led Planck to derive both the Wien and Rayleigh–Jeans distributions. Planck 

finally found an empirical equation that fit the measured energy distributions over the entire spectrum. In 

determining what modifications to the theory would allow derivation of this empirical equation, he was led to 

the make assumptions that form the basis of quantum theory. His equation leads directly to all the results 

derived previously by Wien, Stefan, Boltzmann, Rayleigh, and Jeans. 

Gustav Mie used the EM theory to predict the scattering coefficient and phase function for radiation 

interacting with small spherical particles (1908a, b), and a historical overview of his contributions is in Horvath 

(2009a). 

Short biographies of the major historical contributors to the theory and practice of thermal radiation energy 

transfer abridged from various sources are given below, along with a timeline that sets the sequence of their 

accomplishments. Barr (1960) gives an interesting and informative comprehensive review of the history of the 

field of thermal radiation. Howell (2002) gives a review of the development of radiation energy transfer. Lewis 

(1973) and Crepeau (2009) discuss the derivation of Planck’s law, and Stewart and Johnson (2016) give a 

historical overview of Planck’s Law and the computational methods historically invoked in computing it in 

various forms. 
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G.2: BIOGRAPHIES OF FIGURES IN THE DEVELOPMENT OF RADIATION THEORY  

 

August Beer (1825-1863) was a German physicist. In 1852, he 

published a paper on the absorption of red light in colored aqueous solutions 

of various salts. He showed that the intensity of light transmitted through a 

solution at a given wavelength decays exponentially with increasing path 

length and the solute concentration.  

 

 

 

 

 

 

 

 

Ludwig Eduard Boltzmann (1844-1906) made seminal 

contributions to the kinetic theory of gases and on energy transfer by 

radiation, but is probably best known for his invention, independently of 

J. Willard Gibbs, of statistical mechanics and the formulation of entropy 

on a microscopic basis. He derived Stefan’s fourth power law for 

radiation emission by considering a heat engine with light as the working 

fluid. He committed suicide in 1906, probably because of depression (he 

was subject to what we now call bipolar disorder) brought on by broad 

criticism of his work. Boltzmann's epitaph in the Central Cemetery in 

Vienna reads  

Ludwig Boltzmann 

1844-1906 

S = k lnW  

 

 

Pierre Bouguer (1698-1758) first discovered the law in 1729 of 

exponential decay of light intensity through an absorbing medium (in his 

case, the atmosphere), now often called the Beer-Lambert Law. He was an 

accomplished naval architect (known as “the Father of Naval Architecture), 

beating out Euler for a prize by the French Academy of Sciences for a paper 

on the masting of ships. Craters on the Moon and Mars are named after him. 
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Robert Wilhelm Eberhard Bunsen (1811-1899) investigated 

spectra emitted by heated elements using a spectrometer designed with Gustav 

Kirchhoff. They discovered the elements cesium and rubidium using the device. 

Bunsen developed gas-analytical methods and was a pioneer in photochemistry. 

With his laboratory assistant, Peter Desaga, he developed the Bunsen burner. 

John Tyndall was one of his graduate students. 

 

 

 

 

 

 

 

Nicolas Leonard Sadi Carnot (1796-1832) was the son of 

Napoleon’s Minister of War (“the Great Carnot”), and was educated as a 

military engineer. In 1824, he published his only paper, “Reflexions on the 

Motive Power of Fire, and on Machines Fitted to Develop that Fire,” which 

outlined one form of the Second Law as well as a reasoned form of the first 

law. His analysis of the most efficient possible cycle efficiency and a cycle 

that has this efficiency carry his name. This analysis was based on caloric 

theory, although unpublished notes indicate that he had begun to doubt that 

theory. He died of cholera at age 36, having provided probably the single 

most important contribution to classical thermodynamics. 

 

 

 

 

 

 

 

Anders Celsius (1701-1744), although primarily an astronomer, 

introduced a thermometer scale with 0 at the boiling point of water, and 

100 at the freezing point. The scale was reversed after his death to 

provide the present Celsius scale (formerly called the centigrade scale). 

Celsius showed that the boiling point of water varied with atmospheric 

pressure, and introduced corrections to the temperature scale to account 

for this. 
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Subrahmanyan Chandrasekhar (1910-1995) won the Nobel 

Prize in 1938 for his work on the structure and evolution of stars, later 

showing star progression toward becoming a black hole. His uncle was 

Chandrasekhara Venkata Raman who won the 1930 Nobel Prize in Physics 

for his work on Raman scattering of photons. His book Radiative Transfer 

(1960) outlines the discrete ordinates method (DOM) now used extensively 

in thermal radiation transfer and introduces methods for treating scattering 

using Stoke’s parameters. 

 
Photo courtesy of University of Chicago 

Photographic Archive, [apf1-09456], Special 

Collections Research Center, University of Chicago 

Library. 

 

 

 

Louis de Broglie (1892-1987) did not originally envisage a career 

in science. He entered the Sorbonne in Paris taking a course in history and 

graduated at 18 with an arts degree. He then became interested in 

mathematics and physics and chose to study for a degree in theoretical 

physics.  

De Broglie was awarded his undergraduate degree in 1913 but his 

career was put on hold by World War I. His doctoral thesis put forward his 

theory of electron waves, based on the work of Einstein and Planck. It 

proposed the theory for which he is best known, the particle-wave duality 

theory that matter has the properties of both particles and waves. The wave 

nature of the electron was experimentally confirmed in 1927.  

His was awarded the Nobel Prize in 1929 and continued to work on 

extensions of wave mechanics. He questioned whether the statistical nature 

of quantum physics reflects an ignorance of the underlying theory or 

whether statistics is all that can be known. 

  

 

John William Draper (1811-1882) was an English-born 

American scientist. In 1847 he observed the Draper point of 798 K at which 

the emission from a heated object becomes visible to the human eye. In his 

1847 paper he presented data on the emission vs. temperature from a heated 

object (replotted here on an absolute scale) but failed to recognize the 

fourth-power dependence, 

because an absolute temperature 

scale was not yet in use.    

     He is credited with taking the 

one of the first photographic 

portraits in 1839. An image of his 

sister from 1840 is considered the 

oldest surviving portrait photo. He 

also took the first detailed 

photograph of the moon in 1840.   
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Paul Karl Ludwig Drude (1863-1906) studied first 

mathematics and then physics at the University of Göttingen. His 

dissertation was on reflection and refraction in crystals. He performed 

pioneering work on the optics of absorbing media and connected the 

optical with the electrical and thermal properties of solids. In 1900 he 

developed a model to explain the relation among thermal, electrical, and 

optical properties of matter. He introduced the symbol c for the speed of 

light. The Drude model would be further advanced in 1933 by Arnold 

Sommerfeld and Hans Bethe, becoming the Drude-Sommerfeld Model. 

In 1906, at the height of his career, be became a member of the Prussian 

Academy of Sciences. A few days after his inauguration lecture, for 

inexplicable reasons, he committed suicide. 

 

 

 

Ernst Rudolph George (ERG) Eckert (1904-2004) was 

born in Prague. After earning his Dr. Ing. in 1927, he moved to Danzig to 

work with Ernst Schmidt at the Engine Laboratory. He researched radiation 

from solids and gases, and published measurements of directional emissivity 

from various materials as well as directional reflectivity of blackbody 

radiation. He also developed optical methods for obtaining configuration 

factors. In 1937, he turned to measurement of the emissivity of CO2-N2 

mixtures as well as water vapor at various temperatures and partial pressures. 

His later career was spent in investigating high-speed flows. He spent a long 

and productive career in Germany, Czechoslovakia, and the U.S. at NASA 

Lewis (now Glenn) Research Center and from 1951 at the University of 

Minnesota.  

 

 

 

Albert Einstein (1879-1955) of course is best known for his theory 

of relativity and for promulgating the world’s most famous equation, relating 

energy and mass through E=mc2. His 1921 Nobel Prize in Physics, however, 

was "for his services to theoretical physics, and especially for his discovery 

of the law of the photoelectric effect.” The latter effect, which experimentally 

showed the presence of quantum energy in incident radiation, was a major 

impetus to the acceptance of quantum theory and provided support for 

Planck’s hypothesis of the existence of quantum energy states needed in his 

derivation of the blackbody distribution. 
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Gabriel Daniel Fahrenheit (1686-1736) developed both an 

alcohol and mercury thermometer, as well as the temperature scale that 

bears his name. He was the first to calibrate thermometers with a 

reproducible scale; previously, each thermometer had an arbitrary scale. 

His original scale for the alcohol thermometer used the zero point at the 

temperature of an equal mixture by weight of ice and salt, and 90 degrees 

as the temperature of the human body, resulting in 30 degrees for the 

freezing point of water. Later, the mercury thermometer allowed expansion 

of the scale to the boiling point of water at 212 degrees, and the rest of the 

scale was revised to 98.6 degrees for the body temperature and the freezing 

point of water to 32 degrees. 

 

 

Maurice Paul Auguste Charles Fabry (1867-1945) received his 

doctorate from the University of Paris in 1892 for his work on interference 

fringes, which established him as an authority in the field of optics and 

spectroscopy. He explained the phenomenon of interference fringes and together 

with Alfred Pérot he invented the Fabry–Pérot interferometer in 1899, making 

possible the accurate measurement of wavelength and refractive index.  In 1904, 

he was appointed Professor of Physics at the University of Marseille, where he 

spent 16 years. While studying the light spectra of the Sun and stars with the 

interferometer, Fabry and Henri Buisson demonstrated in 1913 that solar 

ultraviolet radiation is filtered out by an ozone layer in the upper atmosphere.  

 

 

Eunice Newton Foote (1819-1888) was an amateur American 

scientist and women’s rights activist who is believed to be the first person to 

observe through experiment the ability of CO2 and water vapor to strongly 

absorb solar radiation and link this to the possibility of effects on climate. 

This predated John Tyndall’s similar work and conclusions. Although she 

published her work in 1856, some four years before Tyndall, he is usually 

cited as the first person to note these effects. No photograph of Eunice Foote 

is known to exist; the one shown may be her or a relative. 
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Joseph Thomas Gier (1910-1961) received his undergraduate 

degree in Mechanical Engineering at UC Berkeley in 1933, followed by a 

Master of Engineering degree in 1940. He was initially employed as a 

laboratory technician under Llewellyn Boelter. After serving as a lecturer 

and researcher, Gier was promoted to Associate Professor of Electrical 

Engineering at UC Berkeley in 1951, becoming the first tenured African-

American professor in the University of California system. He formed a 

fruitful partnership with Robert V. Dunkle, a Mechanical Engineering 

professor in 1943. Together they developed instrumentation to characterize 

the radiative properties of surfaces and conceived of spectral selectivity to 

improve the performance of solar collectors. 

 

 

 

 

Oliver Heaviside (1850-1925) was a self-taught 

engineer/mathematician/physicist who invented methods for solving differential 

equations and made many contributions to vector calculus. In 1888/9, he 

reformulated Maxwell’s twenty field equations into a more manageable and now 

generally used set of four equations in terms of four variables (Chapter 4 of the 

textbook). Heaviside was often at odds with his employer and the scientific 

community but made important contributions to physics, astronomy, and 

mathematics. 
 

 

 

 

 
 

William Herschel (1738-1822) was a German-born British 

astronomer. He constructed his first large telescope in 1774 and spent nine 

years carrying out sky surveys to investigate double stars. In March 1781 

he discovered the planet Uranus.  

     He pioneered the use of astronomical spectrophotometry, measuring 

stellar spectral distributions. In 1800, he discovered the presence of infrared 

radiation in sunlight by passing it through a prism and holding a 

thermometer just beyond the red end of the visible spectrum. It showed a 

higher temperature than the visible spectrum, implying energy in then 

unknown infrared portion of the spectrum.  He improved the measurement 

of the rotation period of Mars, and determined that the Martian polar caps 

vary seasonally.  
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Hoyt Clarke Hottel (1903-1998) was a Professor at MIT from 

1928 until his death and became an Emeritus Professor in 1968. He 

developed gas emissivity charts for the important combustion gases, the 

crossed-string method for determining configuration factors in 2D 

geometries, and in 1927 papers he established the engineering basis for 

treating radiation in furnaces, including the zone method. Hottel also 

contributed to the fields of combustion and solar energy. 
 

 

 

 

 

 

 

 

 

 

Margaret Lindsay Huggins (1848-1915) was a pioneer in 

measuring stellar spectra. She, along with her husband William Huggins, 

was the first to show that the stars were indeed suns, based on the similarity 

of their emission spectra with that of the Sun (especially spectral lines of 

magnesium and calcium). Their instrumentation was based on a 

spectroscope model proposed by Bunsen and Kirchhoff. Observations of 

Sirius showed a slight Doppler shift in the measured spectra, which 

indicated that it was moving away from the Earth. This eventually led to 

the discovery of the expanding universe. 
 

 

 

 

 

Christiaan Huygens (1629-1695) was born and died at The 

Hague. His father had studied natural philosophy and was a diplomat. 

Christiaan gained access through him to the top scientific circles of the 

times. He studied law and mathematics at the University of Leiden and the 

College of Orange at Breda.  

In 1654 his attention was directed to the improvement of the 

telescope. In 1655, using one of his own lenses, he detected the first moon 

of Saturn. His astronomical observations required some exact means of 

measuring time, and this led him in 1656 to invent the pendulum clock. His 

reputation was now so great that in 1665, Louis XIV offered him a pension 

if he would live in Paris, which became his place of residence. In 1670 he 

had a serious illness which resulted in leaving Paris for Holland. By 1671 

he returned to Paris. In 1672 Louis XIV invaded the Low Countries and 

Huygens found himself in the position of being in an important post in Paris 

at a time France was at war with his own country. Scientists of this era felt themselves above political wars 

and Huygens, with support from his friends, continued his work.  

The first watch regulated by a balance spring was made under Huygens's direction and presented by 

him to Louis XIV. He returned to Holland in 1681 and devoted himself to the construction of lenses of 

enormous focal length, and he discovered the achromatic telescope eye piece which is known by his name. 
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 In 1689 he came from Holland to England to make the acquaintance of Newton, whose 

Principia had been published in 1687. Huygens recognized the merits of the work but believed any 

theory incomplete which did not explain gravitation by mechanical means and so didn’t accept Newton’s 

theory of universal gravitation which “appears to me absurd.” On his return in 1690 Huygens published his 

treatise on light in which the wave theory was expounded and explained. The immense reputation of Newton 

led to disbelief in any theory which he rejected, and to the general adoption of Newton's corpuscular theory 

over wave ideas.  

In the final years of his life Huygens composed one of the earliest discussions of extraterrestrial life, 

published after his death as the Cosmotheoros (1698).  

 

James Hopwood Jeans (1877-1946) was educated in London. 

Initially interested in the classics, he soon turned towards mathematics.  

Jeans went to Trinity College Cambridge in 1896 on a 

mathematical scholarship. As an undergrad he gained experience in 

experimental physics in the Cavendish Laboratory during 1899-1900. 

During recovery from tuberculosis in 1902 and 1903 he worked on his first 

major text The Dynamical Theory of Gases. Planck had announced in 1900 

his formula on black-body radiation, but Jeans was strongly opposed to 

Planck's results. 

 He held a series of positions between 1900 and 1906, and during 

this period he published his second major text Theoretical Mechanics 

(1906). He published The Mathematical Theory of Electricity and 

Magnetism in 1908 while in the United States. In 1909 he returned to 

England and held the post of Lecturer in Applied Mathematics at 

Cambridge until he retired in 1912. Jeans continued work and wrote 

Radiation and Quantum Theory in 1914. In this work he showed that he had come to accept Planck's black-

body formula.  

 

Gustav Robert Kirchhoff (1824 -1887) had a broad influence 

on physics and engineering. He proposed in 1859 and provided a proof in 

1861 that, in simple terms, “For an arbitrary body emitting and absorbing 

thermal radiation in thermodynamic equilibrium, the emissivity is equal to 

the absorptivity.” This was shown to apply for spectral, directional, and 

total properties. He first described the ideal radiation emitter in 1862 and 

called it the schwarzer körper (blackbody) because, as the perfect emitter, 

it must also be the perfect absorber and thus a zero reflector that would 

appear black to the eye. 

He, along with Robert Bunsen used a prism to analyze the spectrum 

emitted by heated samples. Applying this new research tool, they 

discovered two new elements, cesium (1860) and rubidium (1861). He also 

promulgated the laws of electrical circuit analysis. 
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Johann Heinrich Lambert (1728-1777) was a self-taught 

mathematician, astronomer, logician, and philosopher.  Aside from his work in 

radiation, he offered the first proof that  was an irrational number.  In 1758, he 

published his first book, describing the exponential decay of light, followed in 1760 

by his more complete book Photometrie that describes the exponential decay as 

well as the cosine dependence of the emission from a diffuse surface. 

 

 

 

 

 

 

 

Pyotr Nikolaevich Lebedev (1866-1912) was the first to 

measure radiation pressure on a solid body (1899) at Moscow State 

University which he published in 1901. The measurements of the tiny 

force (Solar radiation exerts about 9 mPa at the Earth’s orbit) were fairly 

inaccurate (off by about 20 percent) but provided the first experimental 

confirmation of Maxwell’s theory of electromagnetism. He also 

performed important experiments on millimeter-wave radiation. He 

created the first school of science in Russia, now part of the Russian 

Academy of Science. A crater on the far side of the moon is named for 

him.  

 

 

 

 

Gilbert Newton Lewis (1875- 1946) was a precocious child who 

learned to read at age three. At age 13 he entered the prep school of the 

University of Nebraska and continued to the University. After his second 

year, he transferred to Harvard, where he concentrated in chemistry, getting 

his B.A. in 1896 and Ph.D. in 1899.  

After earning his Ph.D., he studied under Wilhelm Ostwald at 

Leipzig and Nernst at Göttingen. In 1905 MIT appointed him to the faculty. 

He became assistant professor in 1907, associate professor on 1908, and 

full professor in 1911. He left MIT to become dean of the College of 

Chemistry at UC Berkeley in 1912. 

 In 1908 he published the first of several papers on relativity, in 

which he derived the mass-energy relationship in a different way from 

Einstein's. In 1913, he was elected to the National Academy of Sciences, 

but in 1934 he resigned in a dispute over internal politics. In 1926, he 

coined the term "photon" for the smallest unit of radiant energy. He died at 70 of a heart attack while working 

in his laboratory. 
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Hendrik Antoon Lorentz (1853-1928) was a Dutch physicist 

who made significant  contributions to Einstein’s theory of special 

relativity. His 1875 dissertation at Leiden University was “On the theory 

of reflection and refraction of light”, which refined Maxwell’s EM theory. 

His 1892 electron theory proposed that in matter there are electrons that 

conduct electric currents and whose oscillations give rise to light.  He 

shared the 1902 Nobel prize with Peter Zeeman for discovering and 

explaining the Zeeman effect which shows that a strong magnetic field can 

affect the wavelength of radiation emission.  

 

 

 

 

 

 

Ludvig Valentin Lorenz (1829-1891) was a Danish chemical 

engineer who became interested in physics. Because he published in Danish, 

his work went unrecognized for many years. He published the relation 

between the density of a pure transparent material and light refraction in 

1869. He also derived the correct velocity of light from electromagnetic 

theory. In 1890 he preceded Gustav Mie in proposing a theory of light 

scattering from spherical particles, sometimes now called the Lorenz-Mie 

theory.  

 

 

 

 

 

Otto Richard Lummer (1860-

1925) (left) and Ernst 

Pringsheim (1859-1917)(right). 

Lummer received the Ph.D. under 

Helmholtz in 1882 and joined the 

University of Berlin as lecturer in 

physics in 1886. He became professor 

in 1896 and in 1905 was appointed full 

professor of theoretical physics at the 

University of Breslau, where his close 

collaborator Ernst Pringsheim had 

preceded him by six months. In 1898, 

Lummer and Ferdinand Kurlbaum had 

published an account of their cavity radiation source (hohlraum), used 

largely unchanged for radiation measurements to the present. It was a hole 

in the wall of a platinum box, divided by diaphragms, with its interior blackened. 

Pringsheim’s doctoral dissertation of 1882 determined the direction of his research- heat and light 

radiation. Despite his appointment in theoretical physics at Breslau, Pringsheim’s scientific production was 

largely experimental. At Berlin it was characterized first by a period of research done alone and then in 

https://en.wikipedia.org/wiki/Otto_Lummer
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cooperation with Lummer after 1896. He developed the radiometer into a useful instrument for measuring 

infrared radiation.  

In 1896, Lummer and Pringsheim turned to investigations of thermal radiation. Continuing Wien’s 

work, Pringsheim assisted Lummer in implementing Kirchhoff’s concept of the blackbody They verified the 

Stefan-Boltzmann law for the temperature dependence of total radiated energy. They then measured the 

spectral distribution of the radiation energy with the aid of a hohlraum. 

In September 1900 they published a paper stating the “invalidity of the Wien-Planck spectral 

equation.” Such negative statements were the main stimuli for Planck to seek a new radiation expression.  

 

James Clerk Maxwell (1831-1879), along with his many 

extremely important contributions in electromagnetic theory and other fields 

of science, formulated the kinetic theory of gases. He is often considered the 

most influential physicist after Einstein and Newton. 

 He described the propagation of an electromagnetic wave using a 

system of 20 equations, and showed that the speed of electromagnetic wave 

propagation was equal to the speed of light, implying that light was itself an 

electromagnetic wave.  

Working with Clausius, he used a statistical approach to find the 

velocity distribution in an assembly of gas molecules at a given temperature 

(later derived using the maximum entropy principle by Boltzmann, and now 

called the Maxwell-Boltzmann distribution). He also observed the 

relationships among thermodynamic properties embodied in Maxwell’s 

Relations.  

 

 

 

Gustav Adolf Feodor Wilhelm Ludwig Mie (1868-1957) 
was a professor of physics with a strong background in mathematics. He 

researched colloids at the University of Greifswald in North-Eastern 

Germany. One of his PhD students investigated the scattering and 

attenuation of light by gold colloids. Mie used his knowledge of the 

Maxwell equations and solutions of very similar problems in the literature 

to treat the theoretical problem of scattering and absorption of light by a 

small absorbing sphere. Since these calculations were done by hand, Mie 

had to limit his theoretical results to three terms in infinite expansions, and 

this limited treatment to particles smaller than 200 nm at visible 

wavelengths. Mie's paper was hardly noticed for the next 50 years. He 

developed the Mie system of units in 1910 with the basic units Volt, 

Ampere, Coulomb and Second (VACS-system). 
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Edward Arthur Milne (1896-

1950) was an English astrophysicist who 

worked on radiation pressure and the 

generation of white dwarf stars. Arthur 

Stanley Eddington (1882-1944), 
also English, investigated the importance 

of nuclear reactions in stellar structure. 

The pair provided a second solution to the 

radiative transfer equation (after Schuster-

Schwarzschild) based on a two-flux (rather 

than two intensity) model.  

 
 

 

Michael I. Mishchenko (1959-2020) received Ph.D. in Physics 

(with honors) from the Ukrainian National Academy of Sciences, Kiev. He 

worked at the Main Astronomical Observatory in Kiev (1987-1992) and 

then joined the research staff of the NASA Goddard Institute for Space 

Studies in New York. He made many contributions to the theory and 

application of radiation scattering, including multiple scattering of polarized 

light in clouds composed of non-spherical particles, computing the 

bidirectional reflection function for flat snow and soil surfaces, interpreting 

quantitatively the photometric and polarization effects exhibited by Saturn's 

rings and outer-planet satellites, and the peculiar radar returns caused by ice-

covered surfaces. 

 

 

Isaac Newton (1643-1727) established the fundamentals of calculus, 

his laws of mechanics and gravitation, and fundamental studies of the behavior 

of light. His laws of mechanics form a major part of the understanding of 

mechanical work in classical thermodynamics. He built the first practical 

reflecting telescope, and developed a theory of color based on obervations of 

the prismatic visible spectrum. Newton argued that the geometric nature of 

reflection and refraction of light could only be explained if light was made of 

particles, referred to as corpuscles, because waves do not tend to travel in 

straight lines, and refraction was caused by accelerating of the corpuscles due 

to attraction by the denser medium. He explained why the particles were 

partially refracted and partially reflected at a glass (prism) surface by noting 

that the particles had “fits of attraction and fits of repulsion.” His theory was superseded by the wave theory 

of Huygens, which proved more successful in explaining many phenomena. Measurements of the speed of 

light in vacuum and then in media with nonunity refractive index showed that light speed is lower, not greater 

in such media, putting the final nail in the corpuscular theory. Alexander Pope wrote the famous epitaph: 

 

Nature and nature's laws lay hid in night; 

God said "Let Newton be" and all was light. 

 

 

https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/Epitaph


G: History and Bios 
 

G-15 
 

Leopoldo Nobili (1784-1835) 

(left) and Macedonio Melloni 

(1798-1854) (right) developed a 

thermopile-based radiometer read by a 

galvanometer, and investigated radiation 

from various sources. They showed 

(1831) that different surfaces emitted 

differing amounts of radiation at the 

same temperature, and that the 

radiometer reacted similarly to light 

sources and heated surfaces. 

 

 

 

 

Max Planck (1858-1947) laid the basis for quantum mechanics and 

was the forerunner of modern physics based on that theory. He studied with 

Helmholtz, and was impressed with the powerful conclusions that could be 

drawn from the Second Law. He originally developed his blackbody spectral 

distribution based on the observation that the denominator in classically 

derived distributions such as that of Wien needed to be slightly smaller to 

fit the experimental data. His attempts to explain the theoretical basis of his 

proposed spectral energy equation led him to hypothesize the existance of 

quantized energy levels, a concept at odds with all of classical physics and 

thermodynamics. He was forced to accept Boltzmann’s interpretation of the 

Second Law as a statistical rather than an absolute law. 

 

 

 

 

Pierre Prevost (1759-1839) was born in the Republic of Geneva, and skittered 

between the church, law, education, travel, and philosophy before concentrating on 

physical science after meeting Lagrange in Berlin. In 1791, he proposed that the 

radiation from a body is emitted regardless of the presence or absence of other bodies 

(“Prevost’s Law”). He also commented on how radiative equilibrium between a body 

and its surroundings is obtained. 
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William John Macquorn Rankine (1820-1872) was born 

in Edinburgh, Scotland. He wrote practical treatises on thermodynamics, 

including the first systematic treatment of steam engine theory, and the 

exposition of what we now call the Rankine cycle. He proposed the 

Rankine absolute temperature scale in 1859. He was also a poet, writing 

The Mathematician in Love, and a song writer, composing such ballads 

as They Never Shall Have Gibraltar. 

 

 

 

 

 

 

 

Svein Rosseland (1894-1985) was a theoretical astrophysicist who 

followed early education in Norway with a fellowship at the Institute of 

Physics in Copenhagen in 1920, where he met many pioneers in atomic 

physics, including Neils Bohr. In 1924, he published the paper describing 

the opacity coefficient of stellar matter, now known as the Rosseland 

coefficient. He made important contributions to theoretical astrophysics 

throughout his career. His 1936 text, Theoretical Astrophysics, may be his 

most important work. He left occupied Norway in 1941 to the US and then 

England, finally returning to Norway in 1946. 

 
Photo courtesy of Creative Commons-Oslo Museum 

 

 

 

Sergei Mikhailovich Rytov (1908-1996) contributed to the 

development of near-field radiation transfer concepts with his pioneering 

studies on fluctuational electrodynamics. Earlier in his career, he developed 

an approximate solution of Maxwell’s equations to describe the propagation 

of an electromagnetic wave through a turbulent atmosphere, and was a 

pioneer in the field of radiophysics. This work has widely been used in 

inverse techniques for determining the phase function and scattering 

coefficient of scattering media from remote signals. Later, he developed the 

description of the effect of thermal fluctuations in electrodynamics and 

published some of the most cited papers and and a book on the subject.  
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Erwin Rudolf Josef Alexander Schrödinger (1887-1961) 
was a Nobel Prize-winning (1933) Austrian physicist who developed 

fundamental results in quantum theory. The Schrödinger equation describes 

the wave function of a particle and how it changes dynamically in time. He 

did not like the consequences that flow from interpreting the equation, and 

said “I don’t like it, and I’m sorry I had anything to do with it.” He wrote in 

various fields of physics: statistical mechanics and thermodynamics, physics 

of dielectrics, color theory, electrodynamics, general relativity, and 

cosmology. He made several attempts to construct a unified field theory and 

is also known for his "Schrödinger's cat" thought-experiment.  
 

 

 

 

 

Franz Arthur Friedrich Shuster 

(1851-1934) studied with Kirchhoff, 

Maxwell, Helmholtz and Rayleigh among 

others. He is credited with initial work on 

predicting antimatter and the eleven-year 

sunspot cycle. Karl Schwarzschild 

(1873-1916) worked on radiative 

pressure on small particles, atomic spectra, 

laid the foundation for the theory of black 

holes, and generalized the theory of the 

Stark effect. Schuster and Schwarzchild 

developed the two-stream model of 

radiative transfer in one-dimensional 

systems. The model is based on assuming a different uniform intensity in the forward and backward 

hemisphere of directions. 

 

Robert Siegel (1927-2017) received his ScD in mechanical 

engineering from MIT in 1953. He joined NASA in 1955 and was a senior 

research scientist at the Lewis/Glenn Research Center for 44 years. He did 

seminal research on reduced gravity heat transfer. There was no text 

dedicated to radiative transfer during the late 1950s and radiation was an 

important component in NASA’s spacecraft designs and propulsion systems. 

NASA management requested him to write basic manuals on radiation for 

use by NASA’s engineers. The resulting three NASA Special Publications 

(SPs) on radiative properties, surface-surface radiation, and radiation in 

participating media became the basis for the graduate text Thermal Radiation 

Heat Transfer now in its seventh edition. Dr. Siegel made important 

contributions to transient radiation analysis, flow in radiating channels, 

barrier coating and variable refractive index systems, and radiation in droplet 

arrays. 

     He was inducted into the inaugural class of the NASA Glenn Research Center Hall of Fame in 2015 as one 

of the “Giants of Heat Transfer.” 
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Ephraim M. Sparrow (1928–2019) received his PhD from 

Harvard in 1952. He was a prolific researcher across many fields of heat 

transfer while working at various posts including the NACA Lewis 

Research center (now NASA Glenn) and finally at the University of 

Minnesota where he was a working faculty member until he died. In the 

field of radiation, he applied contour integration to the calculation of 

configuration factors, introduced the use of variational methods in 

conjugate heat transfer systems, investigated the emittance of various 

cavity geometries, and studied radiation effects in fin configurations.   

 

 

 

 

 

 

 

 

Johannes Stark (1874-1957) received the Nobel Prize in 1919 for his 

“discovery of the Doppler effect in canal rays and the splitting of spectral lines 

in electric fields”, the latter effect on lines now called Stark broadening. His 

request in 1907 as a journal editor for a review article by the relatively (!!) 

unknown Albert Einstein led Einstein along a path to his General Theory of 

Relativity. Stark later became a strong advocate of Adolph Hitler and the Nazi 

party and was a main figure in the Deutsch Physik movement, seeking to 

remove Jewish scientists (including Einstein) and their contributions from 

German physics. 

   Following WW II, Stark was classified as a “major offender,” and was given 

a four-year (suspended) sentence by a denazification court.   

 

 

 

 

Josef Stefan (1835-1893) was born in Austria and attended 

elementary school in Klagenfurt, where he showed his talent. In 1845, he 

entered the Klagenfurt Lyceum and graduated top of his class. He left for 

Vienna in 1853 to study mathematics and physics and earned his 

qualification for university teaching in mathematical physics at the 

University of Vienna in 1858.  
Stefan published nearly 80 scientific articles, mostly in the 

Bulletins of the Vienna Academy of Sciences. He is best known for 

originating Stefan's law in 1879, which states that the total radiation from 

a black body is proportional to the fourth power of its absolute 

thermodynamic temperature T.  In 1884, the law was derived from a 

thermodynamic analysis by Stefan's student Ludwig Boltzmann and hence is known as Stefan–Boltzmann law. 

The law is now usually derived from Planck's law of black body radiation. 

 Using his law, Stefan determined the temperature of the Sun's surface to be 5,430 °C (9,810 °F), 

comparable to the presently accepted average value of 5780K. This was the first reasonable prediction of the 

apparent temperature of the Sun.  
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John William Strutt, Lord Rayleigh (1842-1919) was one of 

the very few members of higher nobility who won fame as an outstanding 

scientist. He entered Cambridge in 1861 where he read mathematics, and his 

exceptional abilities enabled him to overtake his better prepared competitors. 

From then on, he devoted his full time to science.  

In 1859, John Tyndall had discovered that bright light scattering off 

nanoscopic particulates was faintly blue-tinted. He conjectured that a similar 

scattering of sunlight gave the sky its blue hue, but he could not explain the 

preference for blue light, nor could atmospheric dust explain the intensity of 

the sky's color. In 1871, Rayleigh published two papers on the color and 

polarization of skylight to quantify Tyndall's effect in water droplets in terms 

of the volumes and refractive indices of particulates. In 1881 with the benefit of James Clerk Maxwell's 1865 

proof of the electromagnetic nature of light, he showed that his equations followed from electromagnetism. In 

1899, he showed that they applied to individual molecules, with the terms containing particulate volumes and 

refractive indices replaced with terms for molecular polarizability.  

In 1879 he was appointed to follow Maxwell as Professor of Experimental Physics and Head of the 

Cavendish Laboratory at Cambridge. He left Cambridge in 1884 to continue his experimental work and from 

1887 to 1905 he was Tyndall’s successor as Professor of Natural Philosophy in the Royal Institution of Great 

Britain. 

His first research was mainly mathematical, concerning optics and vibrating systems, but his later 

work ranged over almost the whole field of physics, covering sound, wave theory, color vision, 

electrodynamics, electromagnetism, light scattering, flow of liquids, hydrodynamics, density of gases, 

viscosity, capillarity, elasticity, and photography. He was a Fellow of the Royal Society (1873) and won the 

Nobel Prize in 1904 for measuring gas densities and the discovery of Argon. He died on June 30, 1919. 

 

William Thomson, Lord Kelvin (1824-1907) became 

Professor of Natural Philosophy in 1846 at the University of Glasgow at 

age 22, and remained there for 53 years. He established the first physics 

teaching laboratory, and was responsible for the quote “I often say that 

when you can measure what you are speaking about, and express it in 

numbers, you know something about it; but when you cannot measure it, 

when you cannot express it in numbers, your knowledge is of a meagre and 

unsatisfactory kind.” Of course, he also said “Radio has no future," "X-rays 

are clearly a hoax," and "The aeroplane is scientifically impossible.” 

He suggested his eponymous absolute temperature scale in 1848 

based on Carnot’s work. While working on the laying of the Atlantic cable, 

he found time to publish work in 1849 (at age 25) that included the first use 

of the words thermodynamic and mechanical energy. By 1850 he had 

abandoned the caloric theory, and worked with Joule to extend Joule’s earlier experiments to examine the 

expansion of gases, leading to the measurement and introduction of the Joule-Thomson coefficient.  

 His interest in thermal conduction  and thermodynamics led him to an incorrect estimate of the age of 

the Earth as 20 to 400 million years (and not infinite). His estimate was incorrect because it neglected the effect 

of  radioactive decay and the internal convection of the core, both unknown at the time. (The presently accepted 

value is 4.54109 ± 1% years.) 

He was elevated to the House of Lords in 1892, the first scientist so honored. 
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Andrey Nikolayevich Tikhonov (1906-1993) was a Russian 

mathematician. He graduated from Moscow State University with a PhD 

in 1927. He immediately made important contributions to topology and 

mathematical physics and proved the fundamental uniqueness of the heat 

equation. Of most importance to this book is the method he developed for 

solving ill-posed inverse problems. He is credited with being the first to 

develop the method now known as Tikhonov regularization in 1963 

although others (e.g., Phillips, 1962) developed very similar methods at 

nearly the same time. 
 

 

 

 

 

 

 

 

John Tyndall (1820-1893) was chiefly an experimentalist. From 

1853 to 1887 he was professor of physics at the Royal Institution of Great 

Britain in London. His experiments on radiation and the radiation 

absorption of gases were the basis for his 1872 book Contributions to 

Molecular Physics in the Domain of Radiant Heat and are also described 

in his 1863 text Heat Considered as a Mode of Motion. He proposed that 

differing types of molecules have differing absorptions of infrared 

radiation because their molecular structures give them differing 

oscillating resonances and that the absorption behavior of molecules is 

quite different from that of the atoms composing the molecules. For 

example, nitric oxide (NO) absorbed more than a thousand times more 

infrared radiation than either nitrogen (N2) or oxygen (O2). He also 

observed that – no matter whether a gas is a weak absorber of broad-

spectrum radiant energy – any gas will strongly absorb the radiant energy coming from a separate body of the 

same type of gas, demonstrating a kinship between the molecular mechanisms of absorption and emission. He 

found that moist air was a much better radiation absorber than dry air and speculated on what this meant in 

terms of meteorology and climate. He was probably unaware of Foote’s earlier work. 

 
Tyndall’s apparatus for measuring the difference in radiation 

absorptance of moist and dry air. The moist or dry air is pumped 

from a bag (B) into a cylinder (T) enclosed at each end with a 

rock salt window. C is a blackbody source; P is a radiometer 

connected to a galvanometer (G). A secondary high 

temperature source (burner heated) C’ could also be viewed by 

the detector if the intervening screen was removed. (From 

Tyndall 1865). 
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Stanislaw Ulam (1909-1984) was a Polish-born scientist who 

worked at Los Alamos on the nuclear weapons Manhattan Project during 

WW II. Following recovery from serious brain surgery, in 1947 he brought 

forth the idea of implementing statistical techniques for modeling the 

individual histories of neutrons during their supercritical reactions, now 

known as the Monte Carlo method, as a substitute for solving the very 

complex equations otherwise required. He developed the idea along with 

John von Neumann, Enrico Fermi, Nicholas Metropolis and others. 

Metropolis and Ulam published the first paper in the open literature on the 

method in 1949. 

 

 

 

 

Raymond Viskanta (1931-2021) was born in Lithuania, and with 

his family migrated to Germany in 1944 and on to the US in 1949. He 

received his PhD from Purdue University in 1960 and joined the Purdue 

faculty in 1962. He made wide ranging and significant contributions to 

engineering understanding and applications to highly nonlinear problems 

involving radiation coupled with conduction and/or convection, radiating 

systems with transients, radiation transfer in combustion systems and for 

glass manufacturing, and radiation effects on melting and solidification, 

porous media, and buoyancy driven systems. He was widely respected as a 

mentor and beloved by his many students. 

 

 

 

 

 

Wilhelm Carl Werner Otto Fritz Franz (Willy) Wien 

(1864-1928) was born in East Prussia. He studied mathematics and 

physics at the Universities of Göttingen and Berlin. Between 1883 and 

1885, he worked in Hermann von Helmholtz’s laboratory and in 1886, he 

took a doctorate with a thesis on diffraction and on the influence of 

materials on the color of refracted light.  

In 1893, he announced what would later be called the law of 

displacement: that the product of wavelength and absolute temperature for 

a blackbody is constant. In 1896, he proposed a formula which described 

the spectral composition of radiation from an ideal body, which he called 

a blackbody. This work impelled Max Planck to propose quantum effects 

to bring Wien’s distribution into agreement with experimental 

measurements. His blackbody formula earned Wien the 1911 Nobel Prize 

in physics.  

https://ethw.org/Nobel_Prize
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H: TIMELINE OF IMPORTANT EVENTS IN RADIATION 

 
“Now, the Devil confound those Ancients, for they have stolen all my good thoughts from me!”  

John Hope, c. 1780 

  
1672 Isaac Newton publishes his corpuscular theory of light (based on ideas of “corpuscularism” 

originally set forth by Rene Descartes in 1637) positing that light is composed of individual 

corpuscles that travel in straight lines and have intrinsic characteristics such as color.  

1690 Christiaan Huygens publishes a treatise on the wave theory of light, which can explain effects 

such as diffraction and slowly displaces Newton’s theory. 

~1700 Gabriel Daniel Fahrenheit proposes a reproducible temperature scale for alcohol and mercury 

thermometers. 

1729 Pierre Bouguer establishes the exponential attenuation of light through the atmosphere. 

1742 Anders Celsius proposes a temperature scale based on water’s ice and boiling points. 

1760 Johann Lambert’s book reaffirms Bouguer’s exponential attenuation law and describes the 

cosine law dependence of radiation from a diffuse surface. 

1791  Pierre Prevost postulates that all bodies radiate energy regardless of the presence of other bodies. 

1800 William Herschel finds the presence of radiative energy in the previously unknown infrared 

portion of the spectrum. 

1824 Sadi Carnot publishes analysis establishing the Second Law of Thermodynamics for ideal 

reversible heat engines, operating on a cycle now known as the Carnot Cycle. 

1831 Leopoldo Nobili and Macedonio Melloni use the thermopile-based radiometer to demonstrate 

that light and radiant energy have similar characteristics. 

1847 John William Draper observes the temperature at which a heated object becomes visible but 

misses the fourth power dependence of emission in his data, perhaps because the absolute 

temperature scale had yet to be established. 

1848 Lord Kelvin proposes an absolute temperature scale based on Carnot’s reversible cycle. 

1852 August Beer shows that the exponential attenuation of light through a solution depends on the 

concentration of the absorbing solute. The exponential attenuation relation is often called the Beer-

Lambert Law, although it was first proposed by Bouguer in 1729. 

1856 Eunice Newton Foote publishes experimental results showing that CO2 and water vapor are 

strong absorbers of solar radiation and speculates on the possible effects on climate. 

1859 W.J.M. Rankine proposes an absolute temperature scale. James Tyndall observes that blue light 

is preferentially scattered by small particles. Gustav Kirchhoff shows that the emissivity and 

absorptivity of a body in radiative equilibrium must be equal, both on a spectral and total basis. 

Kirchhoff and Robert Bunsen show that emission spectra can be used to identify elements from 

their spectral patterns and develop a spectroscope to identify the presence of trace metals in flame 

tests. Method leads to discovery of cesium and rubidium as new elements in the following year. 

1859-66 James Clerk Maxwell develops a heuristic theory of the distribution of velocities among a set of 

ideal gas particles. 

1861 Gustav Kirchhoff coins the term blackbody for the ideal absorber and emitter of thermal 

radiation. Margaret and William Huggins use a spectroscope based on the Kirchhoff-Bunsen 

design to demonstrate that stars are far-away suns. 

1863 John Tyndall makes measurements of total gas absorptance, noting that NO, H2O, CO2, CH4 and 

others are strong absorbers compared with N2 and O2, and indicates that their presence in the 

atmosphere may well affect climate. He was unaware of earlier work by Foote. 

1864 Maxwell publishes A Dynamical Theory of the Electromagnetic Field, mathematically describing 

the propagation of electromagnetic waves using twenty differential equations. He also performs a 

statistical derivation of the velocity distribution of gas molecules. 
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c.1870 Ludwig Boltzmann rederives Maxwell’s velocity distribution based on the maximum entropy 

principle, placing it on a sound theoretical basis. It is now known as the Maxwell-Boltzmann 

distribution. 

1871 Lord Rayleigh publishes his conclusions on scattering from small particles and shows that his 

ideas extend to scattering by molecules. 

1879 Josef Stefan proposes empirically that emission from a blackbody is proportional to the fourth 

power of the absolute temperature. 

1884 Boltzmann provides theoretical justification for Stefan’s proposal. 

1888/9 Oliver Heaviside reduces Maxwell’s twenty electromagnetic wave equations to the set of four 

now used. 

1892 Hendrik Lorentz proposes relation between electrical and radiative properties of conductors. 

1894 Willy Wien proposes a thermodynamically based relation between the wavelength and 

temperature of one ideal blackbody and the “corresponding” wavelength and temperature of 

another (the “Displacement Law.”) 

1896 Wien proposes a thermodynamically based relation for the spectral distribution of radiation 

emission from an ideal blackbody. 

1899 Maurice Paul Auguste Charles Fabry with Alfred Pérot invents the interferometer, allowing 

accurate measurements of wavelength and refractive index. Pyotr Nikolaevich Lebedev makes 

the first measurement of radiation pressure, providing experimental confirmation of Maxwell’ 

electromagnetic theory. 

1900 Rayleigh proposes a relation for the spectral distribution of the emission of radiation from an ideal 

blackbody. However, his relation approaches very large values at short wavelengths, in opposition 

to experimental data (the “ultraviolet catastrophe”.) Otto Lummer and Ernst Pringsheim 

provide careful measurements of the spectral emission of radiation from an ideal blackbody and 

show that both the Wein and Rayleigh distributions lie outside the data error bounds at large or 

small T values, respectively. Paul Drude extends relation between radiative and electrical 

properties of conductors. 

1901 Max Planck proposes a relation for the spectral distribution of emission of radiation from an ideal 

blackbody that modifies the Wien distribution and agrees with the Lummer-Pringsheim data. The 

required assumption of quantized energy states necessary to derive his distribution leads to the 

beginning of quantum theory. 

1905 James Jeans bolsters Rayleigh’s idea of a spectral distribution by invoking the classical idea of 

the equipartition of energy. Albert Einstein shows that the photoelectric effect of electrons ejected 

from a surface exposed to light cannot be satisfactorily explained by wave theory, but that the 

incident radiation must have energy quantum characteristics. This gives credence to Planck’s 

quantum energy state hypothesis. 

1905-6 Arthur Schuster and Karl Schwarzschild develop a two-intensity stream model of radiative 

transfer, giving one of the first analytical solutions to radiative transfer in participating media. 

1908  Gustav Mie establishes the radiation scattering characteristics of particles. 

1909 Johannes Stark receives Nobel Prize for discovering the effect of electrical fields on spectral 

lines. 

1921 E. A. Milne and Arthur Eddington provide a solution to the radiative transfer equation in 

participating media based on a modified two-stream model. 

1923 Luis de Broglie hypothesizes that since electromagnetic radiation can be interpreted in terms of 

particles, then matter particles should also have the characteristics of waves (an extension of the 

idea of wave-particle duality). 

1924 Svein Rosseland describes the opacity of stellar matter in terms of the now named  Rosseland 

coefficient. 

1926 Erwin Schrödinger publishes his wave equation, describing the wave characteristics of particles 

as predicted to exist by de Broglie, leading to rapid advances in quantum theory. G.N. Lewis coins 

the term photon for the particle/wave carrying radiant energy. 

https://en.wikipedia.org/wiki/Alfred_P%C3%A9rot


H: TIMELNE 
 

H-3 
 

1927- Hoyt Hottel in a series of papers, chapters and texts provides the engineering basis and 

combustion gas property values for calculating radiation transfer in combustion furnaces. 

1937 E.R.G. Eckert measures the emittance of CO2-N2 and H2O-N2 mixtures. 

1947 Stanislaw Ulam proposes the Monte Carlo method for modeling neutron interactions, later 

extended to model thermal radiation. 

1953 Sergei Mikhailovich Rytov publishes seminal work on the effect of electrical fluctuations on 

thermal radiation, or fluctuation electrodynamics, 

1963 Andrey Tikhonov introduces regularization methods to treat ill-posed inverse problem. 

1960- Michael Mishchenko, Raymond Viskanta, Ephraim Sparrow, Robert Siegel and others 

expand the engineering treatment of thermal radiation transfer by applying mathematical and 

physical principles.  
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I: ADDITIONAL HOMEWORK 

The homework in this Appendix is meant to provide instructors or students an additional range of 

problems from those in the text for extra assignment or home study. Solutions are in the Solution 

Manual, available from the publisher. 

 

Chapter 2: 
I.2.1  Radiant energy at a wavelength of 2.0 μm is traveling through a vacuum. It then enters a medium with a refractive 

index of 1.28. 

(a)  Find the following quantities for the radiation in the vacuum: speed, frequency, and wave number. 

(b) Find the following quantities for the radiation in the medium: speed, frequency, wave number, and wavelength. 

Answer: (a) 2.9979 × 108 m/s; 1.4990 × 1014 s−1; 5 × 105 m−1. (b) 2.342 × 108 m/s; 1.4990 × 1014 s−1; 6.40 × 105 m−1; 

1.5625 × 10−6 m 

I.2.2 What range of radiation wavelengths is present within a glass sheet that has a wavelength-independent refractive 

index of 1.29 when the sheet is exposed in vacuum to incident radiation in the visible range λ0 = 0.4–0.7 μm? 

Answer: 0.310–0.543 μm 

I.2.3 Plot the hemispherical spectral emissive power Eλb for a blackbody in air [W/(m2·μm)] as a function of wavelength 

(μm) for surface temperatures of 2000 and 6250 K. 

I.2.4 A blackbody at 1100 K is radiating in the vacuum of outer space. 

(a) What is the ratio of the spectral intensity of the blackbody at 

λ = 1.0 μm to the spectral intensity at λ = 4.0 μm? 

(b) What fraction of the blackbody emissive power lies between the wavelengths of λ = 1.0 μm and λ = 4.0 μm? 

(c) At what wavelength does the peak energy in the radiated spectrum occur for this blackbody? 

(d) How much energy is emitted by the blackbody in the range 1.0 ≤ λ ≤ 4.0 μm? 

Answer: (a) 0.0541; (b) 0.5488.; (c) 2.6344m; (d) 45484 W/m2 

I.2.5 Solar radiation is emitted by a fairly thin layer of hot plasma near the sun’s surface. This layer is cool compared 

with the interior of the sun, where nuclear reactions are occurring. Various methods can be used to estimate the 

resulting effective radiating temperature of the sun, such as determining the best fit of a blackbody spectrum to the 

observed solar spectrum. Use two other methods (as follows), and compare the results to the oft-quoted value of 

Tsolar = 5780 K. 

(a) Using Wien’s law and taking the peak of the solar spectrum as 0.50 μm, estimate the solar radiating temperature. 

(b) Given the measured solar constant in the Earth’s orbit of 1368 W/m2 and using the “inverse square law” for the 

reduction in energy flux with distance, estimate the solar temperature. The mean radius of the Earth’s orbit 

around the sun is 149 × 106 km and the diameter of the sun is 1.392 × 106 km. 

Answer: (a) 5796 K; (b) 5766 K 

I.2.6 A blackbody radiates such that the wavelength at its maximum emissive power is 2.50 μm. What fraction of the 

total emissive power from this blackbody is in the range λ = 0.7 to λ = 6 μm? 

Answer: 0.805 

I.2.7 A radiometer is sensitive to radiation only in the interval 3.6 ≤ λ ≤ 8.5 μm. The radiometer is used to calibrate a 

blackbody source at 1200 K. The radiometer records that the emitted energy is 5000 W/m2. What percentage of 

the blackbody radiated energy in the prescribed wavelength range is the source actually emitting? 

Answer: 11.2% 

I.2.8 What temperature must a blackbody have for 25% of its emitted energy to be in the visible wavelength region? 

Answer: 4,343 K, 12,460 K (Note: two solutions are possible!) 

I.2.9 Show that the blackbody spectral intensity Iλb increases with T at any fixed value of λ. 

I.2.10 A sheet of silica glass transmits 87% of the radiation that is incident in the wavelength range between 0.38 and 

2.7 μm and is essentially opaque to radiation having longer and shorter wavelengths. Estimate the percent of solar 

radiation that the glass will transmit. (Consider the sun as a blackbody at 5780 K.) 
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If the garden in a greenhouse radiates as a black surface and is at 40°C, what percent of this radiation will be transmitted 

through the glass? 

 
Answer: 75.6%; 0.003% 

I.2.11 Derive Wien’s displacement law in terms of wave number by differentiation of Planck’s spectral distribution in 

terms of wave number, and show that T/ηmax = 5099.4 μm·K. 

I.2.12 A student notes that the peak emission of the sun according to Wien’s displacement law is at a wavelength of 

about λmax = C3/5780 K = 2897.8/ 5780 = 0.501 μm. Using ηmax = 1/0.501 μm, the student solves again for the solar 

temperature using the result derived in Homework Problem I.2.11. Does this computed temperature agree with the 

solar temperature? Why? (This is not trivial—put some thought into why.) 

I.2.13Derive the relation between the wave number and the wavelength at the peak of the blackbody emission spectrum. 

(You may use the result of Homework Problem I.2.11.) 

Answer: ηmax (cm−1) = 5682.6/λmax (μm) 

I.2.14 A 6 by 10 cm black rectangular sheet of metal is heated uniformly with 2600 W by passing an electric current 

through it. One face of the rectangle is well insulated. The other face is exposed to vacuum and very cold 

surroundings. At thermal equilibrium, what fraction of the emitted energy is in the wave number range from 0.40 

to 2 μm−1? 

Answer: 0.5086 

I.2.15 Radiation from a blackbody source at 2,200 K is passing through a layer of air at 12,000 K and 1 atm. Considering 

only the transmitted radiation (i.e., not accounting for emission by the air), what path length is required to attenuate 

by 35% the energy at the wavelength corresponding to the maximum emission by the blackbody source? At this λ, 

take κλ = 1.2 × 10−1 cm−1 for air at 12,000 K and 1 atm. 

Answer: 3.59 cm 

I.2.16 A gas layer at constant pressure P has a linearly decreasing temperature across the layer and a constant mass 

absorption coefficient κm (no scattering). For radiation passing in a normal direction through the layer, what is the 

ratio I2/I1 as a function of T1, T2, and L? The temperature range T2 to T1 is low enough that emission from the gas 

can be neglected. The gas constant is R. 

 

Chapter 3: 

I.3.1 For a surface with hemispherical spectral emissivity ελ, does the maximum of the Eλ distribution occur at the 

same λ as the maximum of the Eλb distribution at the same temperature? (Hint: examine the behavior of dEλ/dλ.) 

Plot the distributions of Eλ as a function of λ for the data of Figure 2.9 of the text at 600 K and for the property data 

at 700 K. At what λ is the maximum of Eλ? How does this compare with the maximum of Eλb? 

I.3.2 The surface temperature-independent hemispherical spectral absorptivity of a surface is measured when it is 

exposed to isotropic incident spectral intensity, and the results are approximated as shown in the following graph. 

What is the total hemispherical emissivity of this surface when it is at a temperature of 1200 K? 
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Answer: 0.179. 

I.3.3 A white ceramic surface has a hemispherical spectral emissivity distribution at 1500 K as shown. What is the 

hemispherical total emissivity of the surface at this surface temperature? 

 
Answer: 0.292. 

I.3.4 A surface has the following values of hemispherical spectral emissivity at a temperature of 900 K. 

 

 
 

(a) What is the hemispherical total emissivity of the surface at 900 K? 

(b) What is the hemispherical total absorptivity of the surface at 900 K if the incident radiation is from a gray source 

at 1800 K that has an emissivity of 0.815? The incident radiation is uniform over all incident angles. 

Answer: (a) 0.476; (b) 0.427. 

 

I.3.5 A diffuse surface at 1100 K has a hemispherical spectral emissivity that can be approximated by the solid line 

shown. 

(a) What is the hemispherical-total emissive power of the surface? What is the total intensity emitted in a direction 

60° from the normal to the surface? 
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(b) What percentage of the total emitted energy is in the wavelength range 5 < λ < 10 μm? How does this compare 

with the percentage emitted in this wavelength range by a gray body at 1100 K with an emissivity ε = 0.611? 

 

 
 

Answer: (a) 44,010 W/m2; 14,009 W/m2 · sr: (b) 36.7%; 24.0%. 

I.3.6 The ελ for a metal at 1100 K is approximated as shown, and it does not vary significantly with the metal 

temperature. The surface is diffuse. 

 
 

(a) What is α for incident radiation from a gray source at 1100 K with εsource = 0.822? 

(b) What is α for incident radiation from a source at 1100 K made from the same metal as the receiving plate? 

Answer: (a) 0.285; (b) 0.356. 

I.3.7 A flat metal plate 0.1 m wide by 1.0 m long has a temperature that varies only along the long direction.  The 

temperature is 900 K at one end, and decreases linearly over the one meter length to 350 K.  The hemispherical spectral 

emissivity of the plate does not change significantly with temperature but is a function of wavelength.  The wavelength 

dependence is approximated by a linear function decreasing from ε  = 0.85 at  = 0 to ε  = 0.02 at  = 10 m.  What 

is the rate of radiative energy loss from one side of the plate?  The surroundings are at a very low temperature. 

  Answer:  416.6 W. 

 

Chapter 4: 
I.4.1 A smooth hot ceramic dielectric sphere with an index of refraction n = 1.40 is photographed with an IR camera. 

Calculate how bright the image is at locations B and C relative to that at A. (Camera is distant from sphere.) 
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Answer: 0.987; 0.849. 

I.4.2 A smooth dielectric material has a normal spectral emissivity of ελ,n = 0.765 at a wavelength in air of 6 μm. Find 

or estimate values for the perpendicular component of the directional-hemispherical-spectral reflectivity ρλ,⊥(θ) at 

the same wavelength and for incidence at θ = 40°. 

Answer: (a) 0.736; (b) 0.327. 

I.4.3 A smooth ceramic dielectric has an index of refraction n = 1.48, which is independent of wavelength. If a flat 

ceramic disk is at 1100 K, how much emitted energy per unit time is received by the detector when it is placed at 

θ = 0° or at θ = 60°? Use relations from the EM theory. 

 

 
 

Answer: 15.69 × 10−5 W at θ = 0°; 7.845 × 10−5 W at θ = 60°. 

I.4.4 A clean metal surface has a normal spectral emissivity of ελ,n = 0.055 at a wavelength of 12 μm. Find the value of 

the electrical resistivity of the metal. 

Answer: 2.834 × 10−4 -cm. 

I.4.5 Evaluate the normal spectral reflectivity of clean aluminum at 400 K when λ0 = 6, 12, and 24 μm. For aluminum, 

the temperature coefficient of resistivity is 0.0039. 

Answer: 0.971; 0.980; 0.986. 

I.4.6 Polished platinum at 300 K is irradiated normally by a gray-body source at 1200 K. Evaluate its normal total 

absorptivity αn. (Use the method of Example 3.4 of the text.) 

Answer: 0.0655. 

I.4.7 The hemispherical total emissive power emitted by a polished metallic surface is 2500 W/m2 at temperature TA. 

What would you expect the emissive power to be if the temperature were doubled? What assumptions are involved 

in your answer? 

Answer: 80,000 W/m2. 

I.4.8 The following figure gives some experimental data for the hemispherical-spectral reflectivity of polished 

aluminum at room temperature. Extrapolate the data to λ = 10 μm. Use whatever method you want, but list your 

assumptions. Discuss the probable accuracy of your extrapolation. (Hint: The electrical resistivity of pure 
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aluminum is about re = 2.73 × 10−6 Ohm-cm at 293 K. At 10 μm, take 33.6 76.4n i= − . You may use any, all, or 

none of these data as you wish.) 

 

 
Answer: 0.975. 

I.4.9 Using Hagen–Rubens emissivity relation, plot the normal spectral emissivity as a function of wavelength for a 

polished aluminum surface used in a cryogenic application at 50 K. What is the normal total emissivity? (Note: Do 

not use any relations valid only near room temperature.) 

I.4.10 Metals cooled to very low temperatures approaching absolute zero become superconducting; that is, the value 

of re(T ≈ 0) ≈ 0. Based on EM theory predictions, what is your estimate of the values of the simple refractive index 

n, the absorption index k, and the normal spectral and normal total emissivities at such conditions? What 

assumptions are implicit in your estimates? What assumptions are implicit in your estimates?  (The results 

predicted by the Hagen-Rubens relation, and other results from classical electromagnetic theory, 

become inaccurate at T < 100 K.  Predictions of radiative properties at low absolute temperatures using 

more exact theoretical approaches are reviewed in Toscano, W. M. and Cravalho, E. G.: Thermal radiative 

properties of the noble metals at cryogenic temperatures, JHT, 98(3), 438–445, 1976. 

I.4.11 The normal spectral absorptivity of a SiO–Al selective surface can be approximated as shown by the long- 

dashed line in Figure 4.20 of the text. The surface receives a flux q from the normal direction. The equilibrium 

temperature of the surface is 1200 K. Assume the hemispherical-spectral ελ = αλ(θ = 0). What is the value of q if it 

comes from a gray-body source at 4900 K? 

 

 
Answer: 12,640 W/m2. 

I.4.12 A directionally selective gray surface has properties as shown below. The α(θ) is isotropic with respect to the 

azimuthal angle ϕ. 

(a) What is the ratio αn(θ = 0)/ε (the normal directional absorptivity over the hemispherical emissivity) for this 

surface? 
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(b) If a thin plate with the aforementioned properties is in Earth orbit around the sun with incident solar flux of 1350 

W/m2, what equilibrium temperature will it reach? Assume that the plate is oriented normal to the sun’s rays 

and is perfectly insulated on the side away from the sun. 

(c) What is the equilibrium temperature if the plate is oriented at 40° to the sun’s rays? 

 

 
(d) What is the equilibrium temperature if the plate is normal to the sun’s rays but is not insulated? Assume the plate 

is very thin and has the same directional radiation properties on both sides. Neglect radiation emitted by or 

reflected from the Earth. 

Answer: (a) 3.0; (b) 517 K; (c) 297 K; (d) 435 K. 

I.4.13 A flat plate in Earth orbit is insulated on one side, and the other side is facing normal to the solar intensity. The 

incident solar flux is 1350 W/m2. A coating on the plate surface facing the sun has a total hemispherical emissivity 

of 0.250 over a broad range of plate temperatures. Surroundings above the plate are at a very low temperature. 

Telemetry signals to Earth indicate that the plate temperature is 730 K. 

(a) What is the normal solar absorptivity αsolar of the plate surface facing the sun? 

(b) If αsolar is independent of angle, what is the plate temperature if the plate is tilted so that its normal is 40° away 

from the solar direction? 

Answer: (a) 2.982; (b) 683 K. 

I.4.14 The spectral absorptivity of a SiO–Al selective surface can be approximated as shown below. The surface is in 

Earth orbit around the sun and has the solar flux 1353 W/m2 incident on it in the normal direction. What is the 

equilibrium temperature of the surface if the surroundings are very cold? 

 

 
Answer: 672 K. 

I.4.15 A thin plate has a directional-gray surface on one side with the directional emissivity shown below on the left. 

On the other side of the plate is a coating with diffuse-spectral emissivity shown below on the right. The 

surroundings are at very low temperature. Find the equilibrium temperature of the plate if it is exposed in vacuum 

to a normal solar flux of 1353 W/m2 with a solar spectrum equivalent to that of a blackbody at 5780 K when 

(a) The directional-gray side is facing normal to the sun. 
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(b) The diffuse-spectral side is facing normal to the sun. 

 

 

 

Answer: (a) 376 K; (b) 265 K. 

I.4.16 A gray surface has a directional total absorptivity given by α(θ) = 0.80 cos4 θ. This flat surface is exposed to 

normally incident sunlight of flux 1050 W/m2. A fluid flows past the back of the thin radiation absorber plate at 

Tfluid = 325 K and with a velocity that gives an energy transfer coefficient of h = 64 W/m2 · K. What is the 

equilibrium temperature of this flat-plate radiation collector? 

 
Answer: 335 K. 

I.4.17 A plate is coated with a material combining directional and spectral selectivity so that the plate has a normal 

total solar absorptivity of 0.92 and an IR hemispherical emissivity of 0.040 at long wavelengths. When placed in 

sunlight normal to the sun’s rays, what temperature will the plate reach (neglecting conduction and convection and 

with no energy losses from the unexposed side of the plate)? What assumptions did you make in reaching your 

answer? The incident solar flux (“insolation”) is 1000 W/m2. 

Answer: 648 K. 

I.4.18 A solar water heater consists of a sheet of glass 1 cm thick over a black surface that is assumed in perfect contact 

with the water below it. Estimate the water temperature for normally incident solar radiation. (Assume that Figure 

8.10 of the text can be used for the glass properties and that the glass is perfectly transparent for wavelengths 

shorter than those shown. Take into account approximately the reflections at the glass surfaces; this is treated in 

more detail in Chapter 11.) 

 
Answer: 389 K. 

 

I.4.19 A gasoline storage tank is receiving sunlight on a somewhat cloudy day so that the incident radiation normal to 

the top of the tank is 900 W/m2.  The sides are not receiving solar radiation. The tank top and sides are painted with 

white paint having spectral reflectivity of  = 0.9 for  < cutoff = 2 m, and rl = 0.1 for  > cutoff = 2 m    
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 (a)  Estimate the average equilibrium temperature that the tank will achieve.  (Neglect emitted and reflected 

radiation from the ground.  Do not account for free or forced convection to the air, although this will be appreciable.)  

The ambient radiating temperature of the surroundings is Te = 300 K. 

 (b)  What is the average tank temperature if the top is painted white but the sides have a gray coating with an 

emissivity of 0.825?   

(c)  What is the temperature if the entire tank is painted with the gray coating? 

 
I.4.20 Consider the Earth as a spinning sphere exposed on one hemisphere to solar energy at the solar flux of 1353 

W/m2. 

(a) If the average solar absorptivity of the Earth is taken as equal to its emissivity (a gray body), what is the estimated 

equilibrium temperature of the Earth? 

(b) If the solar absorptivity and low-temperature emissivity are taken as the properties of fine snow (Tables B.1, B.2 

of the text), what will be the Earth’s equilibrium temperature? 

(c) If the solar absorptivity and low-temperature emissivity are taken as the properties of plowed soil (Tables B.1, 

B.2 of the text), what will be the Earth’s equilibrium temperature? 

(d) Given the results of parts c and d, what do you see as the impact of the melting of polar ice and glaciers due to 

global warming? Is there a feedback mechanism that tends to increase or mitigate the effects of warming? (For 

more in-depth discussion, see Maslowski et al. 2012) 

Answer: (a) 4.7°C; (b) −133.5°C; (c) 56.3°C. 

I.4.21 A flat-plate radiator in space in Earth orbit is oriented normal to the solar radiation. It is receiving direct solar 

radiation of 1350 W/m2, radiation emission from the Earth, and solar radiation reflected from the Earth. What must 

the radiator temperature be to dissipate a total of 3500 W of waste energy from both sides of each 1 m2 of the 

radiator? 

 
Answer: 450.1. K. 

I.4.22 A light pipe (refractive index n2 = 1.3950) of diameter 0.1 cm is placed with its flat end 1 cm from a heated 

semiconductor wafer. What diameter of the wafer surface is viewed by the light pipe? 
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Answer: All values of 0 < θ < π/2. 

 

Chapter 5: 
I.5.1 Derive by any three methods, including use of the factors in Appendix C if you choose, the configuration factor 

F1–2 for the infinitely long geometry shown below in cross section. 

 
Answer: F1–2 = {A + (1 + B2)1/2 − [(A + B)2 + 1]1/2}/2,  

where A = a/w, B = b/w. 

I.5.2 The configuration factor between two infinitely long directly opposed parallel plates of finite width L is F1–2. The 

plates are separated by a distance D. 

(a) Derive an expression for F1–2 by integration of the configuration factor between parallel differential strip 

elements. 

(b) Derive an expression for F1–2 by the crossed-string method. 

Answer: 
    

+ −    
     

1/2
2

1 .
D D

L L
 

I.5.3 The configuration factor between two infinitely long parallel plates of finite width L is F1–2 in the configuration 

shown below in cross section. 

(a) Derive an expression for F1–2 by the crossed-string method. 

 
(b) Derive an expression for F1–2 by using the results of Homework Problem 4.6 and configuration factor algebra. 

(c) Find the configuration factor F1–2 for the geometry of infinitely long plates shown below in cross section. 
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Answer: (a), (b) 
      

+ + − +      
         

1/2 1/2
2 2

1 1 ;
2 2

D D D

L L L
 

(c) −

                  
= + − + − + + +                  

                         

1/2 1/2 1/2 1/2
2 2 2 2 2 2

1 2

3 1
2 1 1 .

2 2 2

D D D D
F

L L L L
 

 

I.5.4 (a) For the 2D geometry shown in cross section, derive a formula for F2–2 in terms of r1 and r2. 

 
(b) Find F2–2 for the 2D geometry. A1 is a square (A1 refers to the total area of the four sides) and A2 is part of a 

circle. 

 
Answer: 

(a) 
−

−

    
= − − −    

      

1/2
2

1 1 1 1
2 2

2 2 2

2 2
1 1 sin

r r r
F

r r r
. 

(b) F2–2 = 0.1359. 

I.5.5 Compute the configuration factor F1–2 between faces A1 and A2 of the infinitely long parallel plates shown below 

in cross section when the angle β is equal to (a) 30° and (b) 75°. 



I: HOMEWORK 
 

I-12 
 

 
Answer: (a) 0.2752; (b) 0.0915. 

I.5.6 A sphere of radius r is divided into two quarter spheres and one hemisphere. Obtain the configuration factors 

between all areas inside the sphere, F1–2, F2–2, F3–1, F1–1, etc. From these factors find F4–5, where A4 and A5 are 

equal semicircles that are at right angles to each other. 

 
Answer: F4–5 = 0.25. 

I.5.7 For the 2D geometry shown, the view between A1 and A2 is partially blocked by an intervening structure. 

Determine the configuration factor F1–2. 

 
Answer: 0.1815. 

I.5.8 The cylindrical geometry shown in cross section is very long in the direction normal to the plane of the drawing. 

The cross section consists of two concentric three-quarter circles and two straight lines. Obtain the value of the 

configuration factor F2–2. 

 
Answer: 0.3547. 

I.5.9 Using the relation F3−(1 + 2) = F3−1 + F3−2, show whether the relation F(1 + 2)−3 = F1−3 + F2−3 is also valid. 

I.5.10 A plate A1 in the configuration below is to be moved along positions from S = 0 cm to S = 100 cm. Plot the 

configuration factor F1–2 versus S for this configuration. 
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I.5.11 Derive the configuration factor F1–2 from a finite rectangle A1 to an infinite plane A2 where the rectangle is tilted 

at an angle η relative to the plane and one edge of the rectangle is in the infinite plane. 

 
Answer: F1–2 = (1/2) (1 − cosη). 

I.5.12 The four flat plates shown in cross section are very long in the direction normal to the plane of the cross section 

shown. Obtain the value of the configuration factor F1–2. What are the values of F2–1 and F1–3? 

 
Answer: F1–2 = 0.4260; F2–1 = 0.3314; F1–3 = 0.1704. 

I.5.13 A long tube in a tube bundle is surrounded by six other identical equally spaced tubes as shown in cross section 

below. What is the configuration factor from the central tube to each of the surrounding tubes? 
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Answer: 0.0844 (>1/12). 
I.5.14 Find F1–2 by any two methods for the 2D geometry shown in cross section. 

 

 
 

Answer: 0.1974. 

I.5.15 Find the configuration factor F1–2 from the quarter disk to the parallel planar ring. 

 
Answer: 0.2973. 

I.5.16 Use the crossed-string method to derive the configuration factor between an infinitely long strip of differential 

width and a parallel infinitely long cylindrical surface. 

Answer: Fd1–2 = (1/2) (sin β2 + sin β1). 

I.5.17 Use the disk-to-disk configuration factor 10 of on-line Appendix C at ThermalRadiation.net/text to obtain the 

factor Fd1–d2 between the interior surfaces of two differential rings on the interior of a right circular cone. 
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Answer: 
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I.5.18 In terms of disk-to-disk configuration factors, derive the factor between the finite ring A1 and the finite area A2 

on the inside of a cone. 

 
I.5.19 A closed right circular cylindrical shell with base diameter 1 m and height 1 m is located at the center of a 

spherical shell 1 m in radius. 

(a) Determine the configuration factor between the inside of the sphere and itself. 

(b) If the top of the cylindrical shell is removed, determine the configuration factor between the inside of the sphere 

and the inside of the bottom of the cylindrical shell. 

Answer: (a) 0.6250; (b) 0.01072. 

I.5.20 Show by an algebraic derivation whether the configuration factor from the interior curved surface of the frustum 

of a cone A1 to its base A2 as given in configuration factor C-111 of the configuration factor catalog at 

http://www.ThermalRadiation.net/ /indexCat.html is equivalent to that given in factor C-112. 

I.5.21 Obtain the value of the configuration factor dFd1–2 for the geometry shown. The areas dA1 and A2 are parallel. 

 

http://www.thermalradiation.net/%20/indexCat.html
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Answer: 0.01261. 

I.5.22 For the geometry below and the special case of l1 = l3, derive algebraic expressions for the factors F1–2, F1–3, and 

F3–3. Use relations from factors C-77 and C-97 from the online catalog at http://www.ThermalRadiation.net/ 

indexCat.html. 

 

 
 

I.5.23 For the infinite parallel cylinders 1 and 2 with plate 3 forming a “deck” between them, find the factors F1–2, F1–

3, and F2–2 in algebraic form.   

 
 

Answer: 
( )

−
− −
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= − = −
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r hr h

F
r h
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I.5.24 Interpreting the figure in Homework Problem I.5.23 as concentric spheres 1 and 2 with a disk 3 inserted between 

them, find the factors F1–2, F1–3, and F2–2 in algebraic form. 

Answer: − −
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Chapter 6: 
I.6.1 A rectangular carbon steel billet 1 × 0.5 × 0.5 m is initially at 1150 K and is supported in such a manner that it 

transfers energy by radiation from all of its surfaces to surroundings at Te = 27°C (assume the surroundings are 

black). Neglect convective energy transfer and assume the billet radiates like a blackbody. Also, assume for 

simplicity that the thermal conductivity of the steel is infinite. How long will it take for the billet to cool to 410 K? 

(For carbon steel, let ρcs = 7800 kg/m3 and ccs = 470 J/kg · K.) 

 
Answer: 9.61 h. 

I.6.2 A black circular disk 0.15 m in diameter and well insulated on one side is electrically heated to a uniform 

temperature. The electrical energy input is 1300 W. The surroundings are black and are at Te = 500 K. What fraction 

of the emitted energy is in the wave number region from 0.2 to 1 μm−1? 
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Answer: 0.680.  

I.6.3 A hollow cylindrical heating element is insulated on its outside surface. The element has a 25 cm inside diameter 

and is 25 cm long. The black internal surface is to be held at 1000 K. The surroundings are in vacuum and are at 

400 K. Both ends of the cylinder are open to the surroundings. Estimate the energy that must be supplied to the 

element (W). 

 

Answer: 4490 W. 

I.6.4 The black-surfaced three-sided enclosure shown below has infinitely long parallel sides, with the 

specified temperatures and energy rate additions. Find Q1, Q2, and T3. (Side 3 is a circular arc). 

 
Answers: Q1 = -123,561 W/m; Q2 = 120,561 W/m; T3 = 1032 K.

 
I.6.5 Two enclosures are identical in shape and size and have black surfaces. For one enclosure, the temperatures of the 

surfaces are T1, T2, T3,....,TN.  For the second, the surface temperatures are (T1
4
 + k)1/4, (T2

4
 + k)1/4, (T3

4 + k)1/4, 

..., (TN
4 + k)1/4, where k is a constant. Show how the energy transfer rates Qj at any surface Aj are related for the two 

enclosures. 

I.6.6 An enclosure with black interior surfaces has one side open to an environment at temperature Te. The sides of the 

enclosure are maintained at temperatures of T1, T2, T3, ..., TN. How are the rates of energy input to the sides Q1, Q2, 

Q3, ..., QN influenced by the value of Te? How can the results for Te = 0 be used to obtain solutions for other Te? 

 
 

I.6.7 A black 6 cm diameter sphere at a temperature of 1100 K is suspended in the center of a thin 10 cm diameter 

partial sphere having a black interior surface and an exterior surface with a hemispherical total emissivity of 0.1. 

The surroundings are at 300 K. A 7.5 cm diameter hole is cut in the outer sphere. What is the temperature of the 
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outer sphere? What is the Q being supplied to the inner sphere? (For simplicity, do not subdivide the surface areas 

into smaller zones.) 

 

 
 

Answer: 988 K; 431 W. 

I.6.8 An infinitely long enclosure (normal to the direction shown) is shaped as shown in the following. Assuming that 

the uniform flux restrictions are met along each surface, find Q1 and T2. 

 

 
Answers: Q1 = −12 kW/m; T2 = 1307 K. 

I.6.9 Two infinitely long diffuse–gray concentric circular cylinders are separated by two concentric thin diffuse–gray 

radiation shields. The shields have identical emissivities on both sides. 

(a) Derive an expression for the energy transferred between the inner and outer cylinders in terms of their 

temperatures and the necessary radiative and geometric quantities. (Number the surfaces from the inside out; 

i.e., the inner surface is number 1, the outer surface is number 4.) 

(b) Check this result by showing that in the proper limit it reduces to the correct result for four parallel plates with 

identical emissivities. 

(c) Find the percent reduction in energy transfer when the shields are added if the radii for the surfaces are in the 

ratio 1:2:4:8, and if ε1 = ε4 = 0.7 and ε2 = ε3 = 0.1. 

Answer: 

(a) 
( )4 4

1 1 4

1 23 1 34
12

2 3

1 1
where 1 .a

ab

a b b

A T T A
Q G

AG AG AG
A A

 −  
=  + − 

  + +

 

(b) 
( )4 4

1 1 4
.

2
3 1

A T T
Q

 −
=

 
− 

 

 

  (c) Qwith/Qwithout = 0.0942 

I.6.10 Consider the gray cylindrical enclosure described in Homework Problem 6.8 of the text with the top in place. A 

hole 30 cm in diameter is cut in the top. Determine the configuration factors between (a) the base and the hole and 
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(b) the curved wall and the hole. Estimate the radiant energy escaping through the hole. The outside environment 

is at Te ≈ 0 K. 

Answer: (a) 0.00238; (b) 0.00238; (c) 2630 W. 

I.6.11 A thin gray disk with emissivity 0.9 on both sides is in Earth’s orbit. It is exposed to normally incident solar 

radiation (neglect radiation emitted or reflected from the Earth.) What is the equilibrium temperature of the disk? 

A single thin radiation shield having emissivity 0.05 on both sides is placed as shown. What is the disk temperature? 

What is the effect on both of these results of reducing the disk emissivity to 0.5? (Assume the surroundings are at 

zero absolute temperature and that for simplicity, it is not necessary to subdivide the areas.) 

 

 
 

Answer: For unshaded disk, 330.5 K (either value of ε); with shield, 31.1 K (ε = 0.05); 136.1 K (for ε = 0.5). 

I.6.12 For the enclosure with four infinitely long parallel walls shown in the following in cross section, calculate the 

average heat flux on surface 2 (W/m2). All surfaces are diffuse–gray and are assumed for simplicity to have uniform 

outgoing flux distributions. 

 
Answer: −4972 W/m2. 

I.6.13 A very long cylinder at temperature T1 is coaxial with a long square 

enclosure shown in the following cross section. The conditions on surfaces 

1–5 are shown in the table. Find Q1 and T2. (For simplicity, do not subdivide 

the surfaces. Also, note that the configuration factors for this geometry were 

derived in Homework Problem 5.12 of the text.)  

 

Surface T(K) Q (W/m)  

1 1100  0.4 
2  0 0.5 
3 0  1 
4 0  1 
5 0  1 

Answer: T2 = 703 K; Q1 = 100 kW/m. 

 

I.6.14 In a metal-processing operation, a metal sphere at uniform temperature is heated in a vacuum to high 

temperature by radiative exchange with a circular heating element. The surroundings are cool enough that they do not 

affect the radiative exchange and may be neglected. The surfaces are diffuse–gray. Derive an expression for the net 

rate of energy absorption by the sphere. The expression should be given in terms of the quantities shown. For 
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simplicity, do not subdivide the surface areas. Discuss whether this is a reasonable approximation for this geometry 

for the distribution of reflected energy from the sphere. 

 
 

I.6.15 A 10 cm diameter hole extends through the wall of a furnace having an interior temperature of 1350 K. The wall 

is a 20 cm thick refractory brick. Divide the wall thickness into two zones of equal length and compute the net radiation 

out of the hole into a room at 300 K. (Neglect energy conduction in the wall.) 

 

 
 

Answer: T1 = 1216 K; T2 = 1033 K; Q3 = −560 W. 

I.6.16 A cubical enclosure with edge length of 6 m has a very 

small sphere placed at its center (Asphere ≪ Aside). The 

sphere has emissivity ε = 0.4 and is maintained electrically 

at Ts = 1300 K. The interior walls of the cube have the 

following properties: 

 

 
 

Determine the net q added or removed from each side of the cube and the q added to the sphere. Find the results in 

kW/m2. Tabulate all the required configuration factors. (Assume the incident radiation on each surface is uniform.) 

Answer: q1 = 69.9 kW/m2; q2 = −0.86 kW/m2; q3 = −6.10 kW/m2; q4 = −28.0 kW/m2; q5 = −5.11 kW/m2;  

q6 = −29.8 kW/m2; qs = 54.9 kW/m2. 

I.6.17 A thin diffuse–gray circular disk with emissivity ε1 on one side and ε2 on the other side is being heated in a 

vacuum by a cylindrical electrical heater with a diameter D. The heater has a diffuse–gray interior surface and is 

open at both ends. 

(a) Derive a formula (which can be in terms of configuration factors) for the net radiative energy rate being gained 

by the disk while it is being heated. The formula should be in terms of the instantaneous disk temperature and 

the quantities shown. 

For the specific case, Th = 1200 K; Te = 300 K; D = 0.50 m; L = 0.80 m; d = 0.30 m; l = 0.10 m; ε1 = 0.70; ε2 = 0.85; 

εh = 0.80. 
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(b) What is the net gain (W) when Td = 600 K? 

(c) What is the equilibrium disk temperature long after the heater is turned on? 

 

 
 

Answer: (a) 

( )

( )( )

( )( )

( ) ( )

4 4
3 3 3 3 1 1 3 3 1 3 3

4
2 2

4 1 4 3 3 3 1 4 3 4 1 3
14 4

2 e d

3 3 3 3 1 1 3 1

Net gain

1 1

1

4 4 1 1 1

dT F F F F T

T F F F F Fd d
T T

F F F

− − − −

− − − − −

− − −

=

   − −  + −     
 

 + − + −  −      =   − −
 − −  + −  

 

(b) 4010 W; (c) 902 K. 

 

I.6.18 A hollow satellite in Earth orbit consists of a circular disk and a hemisphere. The disk is facing normal to the 

direction to the sun. The surroundings are at Te = 20 K. The satellite walls are thin. All surfaces are diffuse. The 

properties are α1, solar = 0.95; ε1, infrared = 0.13; ε2(gray) = 0.80; ε3(gray) = 0.50; ε4(gray) = 0.60. What are the values 

of T1 and T4? (Do not subdivide surfaces. Neglect any emitted or reflected radiation from the Earth.) 

 

 
  Answer: T2 = 458 K; T3 = 345 K. 

I.6.19 A space vehicle in orbit around the sun is at the same distance as the Earth. It is a hollow cube with thin walls 

and is oriented with one side always facing directly toward the sun and the other five sides in the shade. The interior 

is painted with a coating with ε = 0.60. On the outside, the top is coated with a material with αsolar = 0.93 and ε = 

0.80, the front and back sides are faced with aluminum foil with ε = 0.04, and the two sides and the bottom have 

white paint with ε = 0.80. The surroundings are at 0 K. Using as simple a radiation model as is reasonable, obtain 

the temperatures of the six faces of the cube. 
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Answer: T1 (top) = 367 K; T2 (2 sides, bottom) = 234 K; T3 (front and back) = 281 K. 

I.6.20 Consider two parallel plates of finite extent in one direction. Both plates are perfectly insulated on the outside. 

Plate 1 is uniformly heated electrically with energy flux qe. Plate 2 has no external energy input. The environment 

is at zero absolute temperature. 

 
 

(a) For both plates black, show that the integral equations for the surface temperatures are 

( )

( )

/2

b,1 b,2 3/2
2

/2

/2

b,2 b,1 3/2
2

/2

1
( ) 1 ( )

2
1

1
( ) ( )

2
1

L

L

L

L

dY
X Y

Y X

dX
Y X

X Y

−

−

 = + 
 − +
 

 = 
 − +
 





where X = x/a, Y = y/a, θ = σT 4/qe, and L = l/a. 

(b) If both plates are gray, show that ( ) ( ) ( ) ( )1
1 b,1 2 b,2

1

1
; .X X Y Y

− 
 =  +  = 


 

I.6.21 A long groove is cut into a metal surface as shown in the following cross section. The groove surface is diffuse–

gray and has emissivity ε. The temperature profile along the groove sides, as measured from the apex, is found to 

be T(x). The environment is at temperature Te. 

 

 
 

 (a) Derive the equations for the energy flux distribution q(x) along the groove surface. 
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(b) Examine the kernel of the integral equation found in part (a) and show whether it is symmetrical and/or separable. 

I.6.22 A hemispherical cavity is in a block of lightly oxidized copper (1 = 0.57) maintained at 800 K in vacuum. The 

surroundings are at 300 K. Use the integral equation method to compute the outgoing energy flux from the cavity 

surface. 

Answer: 27,140 W/m2. 

I.6.23 A cavity having a gray interior surface S is uniformly heated electrically and achieves a surface temperature 

distribution Tw,0(S) while being exposed to a zero absolute temperature environment, Te = 0. If the environment is 

raised to Te and the heating kept the same, what is the surface temperature distribution? 

 

Answer: ( ) ( )
1/4

4 4
w,0 w e ,T r T r T = − 

 where Tw,0(S) = Tw(S, Te = 0). 

I.6.24 A gray circular tube insulated on the outside is exposed to an environment at Te = 0 at both ends. The q(x, Te = 

0) has been calculated to maintain the wall temperature at any constant value. Now, let Te ≈ 0, and let the wall 

temperature be uniform at Tw. Show that the q(x, Te ≠ 0) can be obtained as the q(x, Te = 0) corresponding to the 

wall temperature 
4 4 1/4

w e( ) .T T−  

 
 

I.6.25 For the geometry and conditions shown in the following, set up the required integral equations for finding q1(y), 

T2(z), and T3(x). Put the equations in dimensionless form and discuss how you would go about solving the 

equations. Which method of Chapter 5 appears most useful? 

T1(y) = T1 = constant; q2(z) = 0 (insulated on the outside); q3(x) = q3 = constant; ε1(y) = 1.0; ε2(z) = ε3(x) = 0.5 
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I.6.26 A four-surface enclosure has the properties and temperatures shown in the following. Find the energy flux for 

each surface and demonstrate that the radiative energy balance is satisfied. Assume that radiosities can be taken as 

uniform across each surface. 

 
Answer: q1 = −54,690 W/m; q2 = 108,100 W/m; q3 = −16.620 W/m; q1 = −90,230 W/m. 

I.6.27 A very long A-frame grain dryer is built with the cross section of an isosceles triangle with the dimensions 

shown in the following. For solar heating, the right opaque side is exposed to the sun and is black, the left side is 

insulated. At a particular time, the conditions for the inside surfaces of the dryer are as shown in the table. 

(a) What will be the floor temperature T3 (K)? 

(b) What will be the temperature of the insulated wall T2? 

      
Answer: (a) 304 K; (b) 437 K. 

 

I.6.28 A radiator is planned to provide energy rejection from a nuclear power plant that is to provide electrical power 

for a lunar outpost. The radiator will itself will be horizontal on the lunar surface, and condensing working fluid in 

the power cycle will maintain the uniform surface temperature of the radiator at 800 K. The radiator is shielded 

from the nearby lunar outpost by a 1.5 m high vertical insulated plate (see diagram on the next page). The width 

of the radiator is limited to 2 m. The radiator has a diffuse–gray emissivity of 0.92, while the insulated shield has 

an emissivity of 0.37. It is expected that the radiator will be quite long. Conduction within the radiator and heat 

shield can be neglected. For the situation when the radiator is on the night side of the moon, 

(a) Set up the equations for finding the energy flux distribution on the radiator, q1(x), and the temperature distribution 

on the shield, T2(y). Note any assumptions. 

(b) Solve the equations for q1(x) and T2(y). Show that the increment size chosen for solution is small enough that 

the solutions are grid independent. 

(c) If the total energy rejection from the radiator is required to be 1.0 MW, what must be the length of the radiator 

(m)? 
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(d) Discuss how the results would change if the influence of incident solar energy on the radiator during daytime is 

considered. 

 
Answers: T2(y = 1.5 m) = 525 K; T2 (y = 0) = 662 K; q1(x = 0) = 16.5 kW/m2; q1(x = 2 m) = 20.8 kW/m2; length of 

radiator = 47.2 m. 

 

Chapter 7: 

I.7.1 Two thin vertical posts stand immediately adjacent to a pool of molten material at temperature Tm and are 

diametrically across the pool from each other. The posts have a square cross-section of area Ax, are of length L, and 

have thermal conductivity k. The entire surface of the posts has emissivity . The pool is of radius r and is assumed to 

be black. A breeze blows across the posts, and the air has temperature Ta. The air motion produces a energy transfer 

coefficient h between the post surface and the air. 

 
Derive an equation for the temperature distribution T(x) along the posts, including the effect of mutual radiative exchange 

by the posts. Assume that the temperature at the bottom of the posts is equal to the temperature of the molten pool.  Also, 

assume that the effect of the temperature of the surroundings Te on radiative transfer can be neglected. Show the necessary 

boundary conditions for the problem and relations for all of the required configuration factors.  (You do not need to 

substitute the F's into the equation, however.) 

I.7.2 How would the analysis in Homework Problem I.7.1 be modified to include the effect of a non-zero environment 

temperature? 

I.7.3. An infinitely long enclosure is shown in cross-section below. It is separated into two compartments by a conducting 

plate with thermal conductivity k = 45 W/m•K. The properties and conditions on the enclosure surfaces are shown in the 

table. The vertical ends are at specified temperatures, and the horizontal sides are insulated on the outside. 
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Determine the values of the 

missing table entries. 

Assume for simplicity that the surfaces need not be subdivided. 

     Answer: q1 = q4 = -q3 = -q6 = 87,667 W/m2, T2 = 1749 K, T3 = 1693 K, T4 = 1254 K, and T5 = 1055 K. 

I.7.4 Thin wire is extruded at fixed velocity through a die at temperature T0.  The wire then passes through air at Ta 

until its temperature is reduced to TL.  The energy transfer coefficient to the air is h, and the wire emissivity is .  It is 

desired to obtain the relation between TL and T0 as a function of wire velocity V and distance L.  Derive a differential 

equation for wire temperature as a function of distance from the die and state the boundary conditions.  (Hint:  Compute 

the energy balance for flow in and out of a control volume fixed in space.)  

 

 
I.7.5 A single circular fin is to dissipate energy from both sides in a vacuum to surroundings at low temperature.  

The fin is on a tube with 2-cm outer diameter.  The tube wall is maintained at 750 K by vapor condensing on the inside 

of the tube.  The fin has 20 cm outer diameter and is 0.30 cm thick.  Estimate the rate of energy loss by radiation from 

the fin if the fin is made from stainless steel [k = 35 W/(m•K)] with a clean surface ( = 0.15).  What is the effect on 

energy dissipation of increasing the fin thickness to 0.60 cm? 

 
Answer: (c) 65 W; 91.2 W. 

I.7.6  The billet in Homework Problem I.I.1 has air at 27°C blowing across it that provides an average convective 

energy transfer coefficient of ( )2h=24 W m K/ • .   Estimate the cooling time with both radiation and convection 

included. 

Surface Emissivity, ε  Net energy flux,  
q (W/m2) 

Temperature, K 

1 1.0  1800 
2 0.1 0  
3 1.0   
4 1.0   
5 0.3  0  
6 1.0  200 
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  Answer: 4.47 hours. 

I.7.7 Opaque liquid at temperature T(0) and mean velocity u enters a long tube that is surrounded by a vacuum jacket 

and a concentric electric heater that is kept at uniform axial temperature Te.  The heater is black, and the tube exterior is 

diffuse-gray with emissivity .  The convective energy transfer coefficient between the liquid and the tube wall is h, and 

the tube wall thermal conductivity is kw.  Derive the relations to determine the mean fluid temperature and the tube wall 

outer surface temperature as a function of distance x along the tube (assume that the liquid properties are constant). 

 

 
I.7.8 A solar collector is designed to fit onto the horizontal section of a roof as diagrammed below.  Flow is from the 

right to the left in the tubes of the collector.  A tilted white diffuse roof section at the left side helps to reflect additional 

solar flux onto the collector.  Set up the equations for determining the local temperature of the tubes for two cases: (a) 

no flow in the tubes, and (b) flow of water in each tube of 2.00 kg/min.  Indicate a possible solution method.  Assume 

that the roof and collector are very long normal to the cross section shown. 

 
I.7.9  A radio antenna extends normal to a spacecraft surface as shown in the diagram below.  The antenna has a 

circular cross section with diameter D=1 cm. The spacecraft itself is very large, and its surface can be considered to be 

black with uniform temperature Tb=500K. The environment is at T  0 K. The antenna material has emissivity =ε(gray, 

diffuse) and thermal conductivity k = 40W/(m·K). 
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(a)  Derive the differential equation for the temperature distribution in the antenna, T(x). Note any assumptions. Include 

the effect of radiation exchange between the antenna and the spacecraft. 

(b)  Place the equation in a convenient nondimensional form, using the nondimensional temperature  (X)=T(X)/Tb, 

and X = x/L. 

(c)  Provide a plot of  (X) vs. X for  = 0.3, 0.5, and 1.0. 

 
I.7.10   A long gray empty circular tube is in the vacuum of outer space so that the only external energy exchange is by 

radiation.  The metal tube is coated with a material that has a solar absorptivity s and an emissivity in the infrared 

region of IR.  The solar flux qs is incident from a direction normal to the tube axis, and the surrounding environment is 

at a very low temperature Te that can be neglected in the radiative energy balances.  The geometry is as shown in cross-

section.  The tube is empty so there is internal radiative exchange.  Energy is conducted circumferentially within the 

tube wall.  The wall thermal conductivity is kw.   

(a)   Set up the energy relations required to obtain the temperature distribution around the tube circumference 

assuming that radial temperature variations within the tube wall can be neglected. 

(b) Place the energy relations in finite difference form and describe how a numerical solution can be obtained. 

 

 
 

I.7.11 The tube in Homework Problem I.7.10 is shielded from solar radiation by being in the shadow of a space 

vehicle, so that it cools to a very low temperature.  It is then suddenly exposed to the solar flux.  Set up the transient 

energy relations required to calculate the tube circumferential temperature distribution as a function of time using the 

same conditions and assumptions as in Homework Problem I.7.10.  Place the equations in finite difference form and 

describe how a numerical solution can be obtained. 

I.7.12 A thin sheet of copper moves through a radiative-convective oven at a velocity of 0.1 m/s.  The sheet and oven are 

very wide.  Air flows at a mass flow rate of 0.2 kg/s per meter of oven width over the sheet in counterflow, and the energy 

transfer coefficient between the air and sheet surface is constant along the sheet at a value of h = 100 W/(m2•K).  The 

back of the sheet is insulated. A black radiant heater at THeater = 1200 K covers the top of the oven as shown.  The 
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radiant heater does not interact convectively with the air stream.  Louvered curtains at each end of the oven are opaque to 

radiation but allow air flow.  The emissivities of all surfaces are shown. 

 
Find the temperature distribution Ts(x) along the copper sheet as a function of position x within the oven and present 

the result graphically.  Discuss all assumptions made in the solution and justify them by numerical argument where 

possible. Data for copper sheet:  ks = 400 W/(m•K); cp,s = 385 J/(kg•K); s = 9000 kg/m3. 

I.7.13 For the geometry shown below with one conducting wall:  

a) Provide the final governing equations necessary for finding T1(x1) and q2(x2) in nondimensional form using 

appropriate nondimensional variables. 

b): Find the temperature distribution T1(x1) and the energy flux distribution q2(x2) and show them on 

appropriate graphs. 

Boundary conditions are q x x x kW m22
1 1 1 1

100 50 
 

= −( ) ( / )  where x1 is in meters, T2=500 K, and T3 = T4 = 300K. 

Properties for the diffuse surfaces are shown on the figure. 

 
 

Show that your solution is grid-independent and meets overall energy conservation. Compare your solution to the 

results for the nonconducting case. 

 Answer:  T1(max) = 1117.7 K with no conduction, T1(max) = 1102.1 K with conduction, and 

 q2(max) = ~ -10,100 W/m2 with no conduction and q2(max) = ~ -9,700 W/m2 with conduction. 

 

Chapter 9: 

I.9.1 A plane layer of semitransparent medium without scattering is at a uniform temperature of Tm = 950 K. The layer 

is 0.28 m thick. The medium has three absorption bands with constant absorption coefficients 1 = 5.5 m-1,  2 = 4.6 

m-1, and  3 = 3.8 m-1 in the wavelength bands from 1.3 to 3.1 m, 3.65 to 5.05 m, and 5.95 to 8.5 m. For the 

remainder of the spectrum, the medium is perfectly transparent. One boundary of the layer is in contact with a black 

source at Tw = 1030 K. Calculate the intensities leaving the layer at the other boundary in the normal direction, 30 from 

the normal, and 60 from the normal. 
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Answer: I(x=0.28 m, =0) = 10458 W/(m2·sr); I(x=0.28 m, =30) = 10262 W/(m2·sr);  

I(x=0.28 m, =60) = 9699.1 W/(m2·sr).  

 

I.9.2   A large absorbing semitransparent medium without scattering has a single plane boundary. A black plate with 

constant temperature of T = 1250K is suddenly placed in contact with that boundary. The plate radiates into the 

medium, which is cool enough that it does not radiate.  Determine the radiative energy source - ·qr at a location x = 

0.82 m into the medium from the plane boundary if the absorption coefficient of the medium is  = 0.75 m-1. 

  Answer: 55960 W/m3. 

I.9.3 A semi-infinite medium is absorbing, emitting, and isotropically scattering.  It is gray, has n  1, and has 

absorption coefficient  and scattering coefficient s.  The medium is initially at uniform temperature Ti.  The 

transparent plane surface of the medium is suddenly subjected to radiative exchange with a large environment at a lower 

uniform temperature Te.  It is proposed to carry out a numerical solution to obtain the transient temperature 

distributions in the medium as it cools.  Provide the energy and scattering equations in a convenient dimensionless form 

that are then to be placed in numerical form for solution.  Include energy conduction and assume the medium is 

stationary.  The density  specific heat c, and thermal conductivity k of the medium are assumed constant. 
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I.9.4 A furnace at atmospheric pressure with interior in the shape of a a cylinder with height equal to two times its diameter 

is filled with a 50:50 mixture by volume of CO2 and N2. The furnace volume is 0.689 m3. The gas temperature is uniform 

at 1800 K and the walls are cooled. The interior surfaces are black. At what rate is energy being supplied to the gas (and 

removed from the walls) to maintain these conditions? For emittance values, use the Alberti et al. (2018) worksheet at 

https://doi.org/10.1016/j.jqsrt.2018.08.008.      

 Answer: 295 kW. 

I.9.5 Pure carbon dioxide at 1 atm and 2500 K is contained between parallel plates 0.3 m apart.  What is the radiative 

flux received at the plates as a result of radiation by the gas? For emittance values, use the Alberti et al. (2018) 

worksheet at https://doi.org/10.1016/j.jqsrt.2018.08.008.   

  Answer:  163 kW/m2. 

I.9.6  A furnace being designed by a chemical company will be used to burn toxic waste composed of hydrocarbons.  

Complete elimination of the hydrocarbons with oxygen requires that the temperature of the combustion products in the 

furnace (60% CO2, 40% H2O by volume) be maintained at 1600 K.  To prevent leakage of toxic waste or combustion 

products to the surroundings, the furnace interior is kept at 0.5 atm.  The furnace is in the shape of a right circular 

cylinder of height equal to its diameter of 4 m.  What average radiative flux is incident on the interior surface of the 

furnace?   Note any assumptions used in obtaining the result. 

  Answer: 124 kW/m2. 

I.9.7  Estimate the maximum radiative flux that is incident on any local area on the interior surface of the furnace 

described in Homework Problem I.9.6.  

  Answer:  133 kW/m2. 

I.9.8 A thin black plate 1 x 1 cm is at the center of a sphere of CO2-air mixture at a uniform temperature of 1800 K and 

1 atm total pressure.  The partial pressure of the CO2 is 0.8 atm and the sphere diameter is 1 m.  How much energy is 

absorbed by the plate?  What will the plate temperature be?  (Assume the boundary of the sphere is black and kept cool 

so that it does not enter into the radiative exchange.) 

 
 

  Answer:  13.0 W, 1034 K. 

I.9.9 An optically thin gray gas with constant absorption coefficient  is contained in a long transparent cylinder of 

diameter D.  The surrounding environment is at low temperature that can be considered zero.  Initially, the cylinder is at 

the environment temperature.  Then, an electrical discharge is passed through the gas, continuously producing in the gas 

a uniform energy source q  per unit volume and time.  Derive a relation for the transient gas temperature variation if 

radiation is assumed to be the only significant mode of energy transfer.  What is the maximum temperature Tmax that the 

gas will achieve? 

  

Answer: 1/43
1max

max

v max

8 T 1 1 q T
t ln tan ;  T ;

c 2 1 4 T

 
 

  

−+  
= + = = 

−  
 . 

 

 

https://doi.org/10.1016/j.jqsrt.2018.08.008.
https://doi.org/10.1016/j.jqsrt.2018.08.008.
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Chapter 10: 

I.10.1 Construct a complete flow diagram for the Monte Carlo solution of the problem outlined for gray plates in 

Homework Problem 6.17. 

I.10.2 A large plate of translucent glass is laid upon a sheet of polished aluminum.  The aluminum is kept at a 

temperature of 500 K and has an emissivity of 0.03.  The glass is 2 cm thick and has a Rosseland mean absorption 

coefficient of R = 3.6 cm-1.  A transparent liquid flows over the exposed face of the glass and maintains that face at a 

temperature of 270 K. 

 (a)  What is the energy flux through the glass plate? 

 (b)  What is the temperature distribution in the glass plate? 

Neglect energy conduction in your calculations, and for simplicity assume that the refractive indices of the glass and 

liquid are both one. 

ANSWER: q = 84.8 W/m2; ( )
1 4

100 133 7 11 2 = − 
/

T( ) . . (K) . 

I.10.3 A long cylinder 12 cm in diameter is surrounded by another cylinder 24 cm in diameter. The surfaces are gray, 

the inner cylinder is at T1 = 910 K with e1 = 0.42, and the outer cylinder is at T2 = 1075 K with e2 = 0.83. What is the 

energy transfer from the outer cylinder to the inner cylinder per unit length for vacuum between the cylinders? If the 

space between the cylinders is filled with a gray medium having absorption and isotropic scattering with extinction 

coefficient  =  + s  = 0.41 cm-1, compute the energy transfer using the P1 method and the diffusion method (energy 

conduction is neglected). 

ANSWER: 5.59 kW/m; 3.94 kW/m; 3.89 kW/m. 

 

I.10.4 Two diffusely emitting and reflecting parallel plates are of finite width and infinite length normal to the cross 

section shown. The lower plate has uniform temperature T1 = 1000 K, and the upper plate is at T2 = 500 K. The plate 

emissivities are ε1 = 0.8 and ε2 = 0.2. The surroundings have a temperature of 450 K. An absorbing–emitting medium 

with absorption coefficient κ = 0.5 m−1 is between the plates. The medium is in radiative equilibrium with its surroundings 

(energy conduction is negligible). 

 

 

 
 

Using the Monte Carlo method, find the distribution of net radiative energy flux on each surface. Show the dependence 

of the results on the number of samples used in the Monte Carlo solution. Plot the results and compare them with the 

results of book Homework Problem 6.17. 

 

I.10.5 Use the Monte Carlo method to determine the temperature distribution in the 2D enclosure shown below. The 

medium in the enclosure is nonscattering and has absorption coefficient κ = 10 m−1. 
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Provide plots of q3(x) on surface 3, T1(x) on surface 1, and Tg(x = 10 m,y) and Tg(x, y = 5 m). Report the number of samples 

used in the solution. 

 

I.10.6 The gray medium in the enclosure below is nonscattering and has an absorption coefficient of κ = 4 m−1 and a 

thermal conductivity of k = 20 W/m·K. 

 

 
Using the Monte Carlo method for the radiative transfer, 

1. Show the governing equation(s) and boundary condition for the problem in specific and dimensionless form. Indicate 

any simplifying assumptions that are necessary. 

2. Provide a plot of q3(x) on surface 3 and profiles of the medium temperature at T(x = 0.5, y) and T(x, y = 0.25). 

3. Show limiting solutions for the cases of NCR = 0 and NCR = ∞. 

4. Show that the solution is grid independent. 

5. Show that energy is conserved on the system boundaries. 

 

I.10.7 Use the Monte Carlo method to determine the temperature distribution in the 2D enclosure shown below. The 

medium in the enclosure is nonscattering and has an absorption coefficient κ = 10 m−1 and thermal conductivity 

of 1.135 W/m·K. 
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Provide plots of q3(x) on surface 3, T1(x) on surface 1, and Tg(x = 10 m, y) and Tg(x, y = 5 m). Show that your solution 

is correct in the limit of no radiation and no conduction. 

 

I.10.8 Use the Monte Carlo method to determine the temperature distribution in the 2D enclosure shown below. The 

medium in the enclosure has isotropic scattering coefficient of σs = 5 m−1 and absorption coefficient κ = 10 m−1 and 

thermal conductivity of 1.135 W/(m·K). 

 

 
 

I.10.9 In Homework Problem 10.5, for the situation of a scattering medium between gray plates, it is desired to double 

the amount of energy being transferred by having the scattering (nonabsorbing) particles suspended in a thermally 

conducting but nonabsorbing medium.  What thermal conductivity of the medium is required to accomplish this?  

  Answer:  2.04 W/(m•K). 

 

Chapter 11: 

I.11.1 As a result of surface treatment, a partially transparent plate has a different reflectivity at each surface. For 

radiation incident on surface 1 in a single direction, obtain an expression for the overall reflectance and 

transmittance in terms of ρ1, ρ2, and τ. 

 

 
 

Answer: 
( ) ( )( ) + −   − − 

= =
−   −  

2
1 2 1 1 2

2 2
1 2 1 2

1 2 1 1
;

1 1
R T  

I.11.2 Two parallel, partially transparent plates have different τ values and a different ρ at each surface. Obtain an 

expression for the overall transmittance of the two-plate system for radiation incident from a single direction. 
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Answer: 

( )( )

( )

−  −  
= =

− −   

 +  −  
=

−   

1 21 2

2
12 21 1 2

2

2

1 1
, where

1 1

1 2
and

1

n n n
n

n n n

nm nn nm n
nm

nm nn n

TT
T T

R R

R

 

I.11.3 In a solar still, a thin layer of condensed water is flowing down a glass plate. The plate has a transmittance τ, 

and the water layer is assumed nonabsorbing. Obtain an expression for the overall transmittance TL of the system 

for radiation incident on the glass in a single direction. 

 
 

Answer: 
( )( )( )

( )( ) ( )

−  −  −  
=

−   −    −   −  

1 2 3

22 2
2 3 1 2 1 3 2

1 1 1
 

1 1 1
LT  

I.11.4 Two opaque gray walls have a transparent (nonabsorbing) plate between them. The transparent plate has surface 

reflectivities ρ. Derive a relation for the energy transfer from wall w1 to wall w2. Neglect energy conduction in the 

transparent plate and neglect the fact that ρ depends on the angle of incidence. 
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Answer: 
( )

→

 −
=


+ − +

  − 

4 4
1 2

1 2

1 2

1 1 2
1

1

w w

w w

w w

T T
q  

I.11.5 Water is flowing between two identical glass plates adjacent to an opaque wall. Derive an expression for the 

fraction of radiation incident from a single direction that is absorbed by the water in terms of the ρ and τ values of 

the interfaces and layers. (Include only radiative energy transfer.) 

 
 

. 

I.11.6 A series of three parallel glass plates is being used to absorb incident infrared radiation. The incident radiation 

is at wavelength λ = 4 μm. The complex index of refraction of the glass at this wavelength is n − ik = 1.40 − 5.8 × 

10–5i. The plates have optically smooth surfaces. The radiation is incident from air in a direction normal to the 

plates. What fraction of the incident radiation is absorbed by the center plate? 

 
Answer: 0.237. 
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I.11.7 Two very thick dielectric regions with small absorption coefficients are in perfect contact at an optically smooth 

interface Ai. Prior to being placed in contact, region 1 was heated to a uniform temperature T1, while region 2 was 

kept very cold at T2 ≪ T1. The indices of refraction are such that n1 > n2 > 1. Derive an expression for the energy 

flux emitted across A1 from region 1 into region 2. Evaluate the result for n1 = 2.35, n2 = 1.54, T1 = 627 K, and T2 

≈ 0. 

 
Answer: 18,800 W/m2.  

I.11.8 Two very thick dielectric regions with small absorption coefficients are separated by a plane layer of a third 

dielectric material that is of thickness D = 2 cm. The two interfaces are optically smooth. The plane layer between 

the two thick regions is perfectly transparent. This plane layer is at low temperature, having been suddenly inserted 

between the two dielectric regions. For the temperatures shown, calculate the net energy flux being transferred by 

radiation from medium 1 into medium 2. Include the effects of interface reflections. The effect of energy 

conduction is neglected. The indices of refraction are given in the figure. 

Answer: 13.0 kW/m2. 

 
 

I.11.9 A layer of transmitting glass (silica) is separated from a silicon wafer by a layer of polymer. A laser provides 

monochromatic energy incident on the assembly of layers. The silicon wafer is opaque at the laser wavelength and 

has surface absorptivity α = 0.694. The silica has a refractive index that gives a surface reflectivity for the laser 

energy of  2SiO  = 0.04 and has transmittance for laser energy of 
2SiO  = 0.95 Similarly, the polymer layer has a 

surface reflectivity for the laser energy of ρpoly = 0.0452 and has transmittance for laser energy of τpoly = 0.90. 

Derive an expression for the reflectance R for the laser energy of the glass/substrate assembly, and also determine 

the fraction of the incident laser energy that is deposited in the silica and polymer layers. 

Answer: 0.302. 
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HOMEWORK USING AI INTERACTIONS 

 
2.7-AI:  Solve Homework Problem 2.7 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

3.7-AI: Solve Homework Problem 3.7 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

4.1-AI: Solve Homework Problem 4.1 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

5.12-AI: Solve Homework Problem 5.12 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

6.2-AI: Solve Homework Problem 6.2 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 
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6.9-AI: Solve Homework Problem 6.9 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

6.19-AI: Solve Homework Problem 6.19 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

7.6-AI: Solve Homework Problem 7.6 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

7.14-AI: Solve Homework Problem 7.14 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

8.3-AI: Solve Homework Problem 8.3 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

(you can omit generating the requested plot if your AI package does not have plot generating 

capability.) 

 

9.2(1)-AI: Solve Homework Problem 9.2 part 1 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

10.3-AI: Solve Homework Problem 10.3 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

c) Was the AI chatbot able to handle an inverse problem? 

 

10.7-AI: Solve Homework Problem 10.7 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

If the flow chart is successfully generated, have AI generate a program to carry it out. 

 

11.5-AI: Solve Homework Problem 11.5 using an AI interface. 
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a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 

 

12.5-AI: Solve Homework Problem 12.5 using an AI interface. 

a) Did you get the same solution as you found using methods from the text? 

b) If the solution is different, show why that is the case: Is it an error in the AI solution or the 

textbook? 
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J: PROPOSED ONE-SEMESTER SYLLABUS 

Below is a syllabus for a one-semester course in radiation energy transfer.  The syllabus is 

based on a 15-week semester with two 90-minute classes per week, with 27 lecture sessions and 

three sessions left for examinations, class evaluation, etc. It begins with a general overview of why 

radiation is an important subject with many applications (Chapter 1). Then come the basics, with 

the fundamental blackbody properties (Chapter 2), the radiative properties of surfaces (Chapters 

3, 4), the definition and use of configuration factors (Chapter 5), energy transfer among gray-

diffuse surfaces and in enclosures with gray-diffuse surfaces, and solution techniques for these 

problems (Chapter 6). The Monte Carlo section for transfer among surfaces is drawn from Section 

10.5 and can be introduced at this point. Interactions with conduction and/or convective transfer 

at enclosure boundaries are then treated (Chapter 7). Chapter 8 introduces the absorption and 

scattering properties of participating media. the absorption characteristics of participating media. 

The treatment of transfer through a participating media and a simplified mean-beam-length 

solution technique is shown (Chapter 9), and a more exact but intuitive method (diffusion solution) 

is examined as one example of a more general case in Chapter 10 which also introduces some 

aspects of radiation, conduction and convection in participating media. Chapter 11 deals with 

radiation in media with non-unity refractive index, such as windows and cover glasses in solar 

collectors. Finally, Chapter 12 is used to kindle interest in contemporary applications of radiation 

in nanoscale and inverse problems. 

There is considerably more material in the text than can be covered in detail in one semester 

or quarter. The syllabus described below is suggested for those teaching the course for the first 

time. Those with experience will of course modify the syllabus to suit their interests and needs, 
 

Chapter 1. Why Study Radiation Energy Transfer  (1-2 sessions of discussion, getting to 

know students and their interests. Pick whatever chapter content is most interesting at the 

moment.) 

 1.1  Introduction 

1.2 Thermal Radiation and the Natural World 

1.3 Thermal Radiation in Engineering and Thermodynamics 

 1.4 Solar Energy 

  Solar Energy Conversion 

  Radiation Transfer, Architecture, and Visual Comfort 

  Astronomy, Astrophysics, and Atmospheric Radiation 

Solar Energy, Global Warming, and Climate Change 

1.5 Combustion and Flames 

 1.6 Porous Media and Packed Beds 

 1.7 Space Applications 

  Spacecraft Thermal Control 

  Radiation Energy Transfer in Rocket Nozzles 

 1.8 Advanced Manufacturing and Materials Processing 

 1.9 Biomedical Applications  

1.10 Conclusions 
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Chapter 2. The Basics of Thermal Radiation  

2.1 Nature of the Governing Equations (3 class sessions on Sections 2.1 – 2.6) 
2.2 Electromagnetic Waves vs. Photons 

2.3 Radiative Energy Exchange and Radiative Intensity  

2.4 Solid Angle 

2.5 Spectral Intensity 

2.6 Characteristics of Blackbody Emission 

Perfect Emitter 

Radiation Isotropy in a Black Enclosure 

Perfect Emitter for Each Direction and Wavelength 

Total Radiation into Vacuum  

Blackbody Intensity and Its Directional Independence 

Blackbody Emissive Power: Cosine-Law Dependence 

Hemispherical Spectral Emissive Power  

Planck’s Law: Spectral Distribution of Emissive Power 

Approximations to the Blackbody Spectral Distribution 

Wien’s Displacement Law 

Total Blackbody Intensity and Emissive Power 

Blackbody Radiation within a Spectral Band 

Total Blackbody Intensity and Emissive Power 

Summary of Blackbody Properties  

2.7 Radiative Energy Along a Line-Of-Sight (Section 2.7can be downplayed unless  

                                                                    plan to place emphasis on Chapters 8-10)  

Radiative Energy Loss due to Absorption and Scattering  

Mean Penetration Distance  

Optical Thickness 

Radiative Energy Gain due to Emission 

Radiation Pressure 

Radiative Energy Gain due to In-Scattering 

2.8 Radiative Transfer Equation (RTE) (1 session on Sections 2.8, 2.9)   

2.9 Radiative Energy Transfer in Enclosures with Nonparticipating Media 

2.10 Probabilistic Interpretation (This section provides background for Monte Carlo                                                      

      method) 

2.11 Concluding Remarks  

 

Chapter 3. Radiative Properties at Interfaces [2 sessions: Concentrate on meanings of the 

properties, Kirchhoff’s Law and its restrictions (Section 3.3), and relations among the 

properties. Perhaps dwell on emissivity and its variations with wavelength and direction, and 

send less time on the other properties except to note that they are there for reference]. 

3.1 Introduction 

3.2 Emissivity 

Directional Spectral Emissivity, ϵλ(θ,ϕ,T) 

Directional Total Emissivity, ϵ(θ,ϕ,T) 

Hemispherical Spectral Emissivity, ϵλ(T) 

Hemispherical Total Emissivity, ϵ(T) 
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3.3 Absorptivity 

Directional Spectral Absorptivity, αλ(θi,ϕi,T) 

Kirchhoff’s Law 

Directional Total Absorptivity, α(θi,ϕi,T) 

Kirchhoff’s Law for Directional Total Properties 

Hemispherical Spectral Absorptivity, αλ(T) 

Hemispherical Total Absorptivity, α(T) 

Diffuse-Gray Surface 

3.4 Reflectivity 

Spectral Reflectivities 

Total Reflectivities 

Summary of Restrictions on Reflectivity Reciprocity Relations 

3.5 Transmissivity at an Interface 

Spectral Transmissivities 

Total Transmissivities 

Relations among Reflectivity, Absorptivity, Emissivity, and Transmissivity 

  

Chapter 4. Predicted and Measured Surface Properties  

(2 sessions. Concentrate on overview of EM theory and its predictions and 

comparisons with measured values, solar applications.)   

 4.1 Prediction of Radiative Properties of Opaque Materials, 

  4.2 Introduction to Electromagnetic Wave Theory,  

  4.2.1 Waves Propagating in an Isotropic Dielectric Medium, 

  4.2.2 Waves Propagating in an Isotropic Conducting Medium, 

  4.2.3 Polarization, 

 4.3 Origins of Optical Constants, 

  4.3.1 Lorentz Model (Non-conductors), 

  4.3.2 Drude Model (Conductors), 

 4.4 EM Waves at Interfaces, 

  4.4.1 Dielectric Materials, 

  4.4.2 Radiative Properties of Conductors, 

4.5 Measurements on Real Surfaces,  

4.5.1 Surface Heterogeneity,  

4.5.2 Surface Roughness Effects 

4.5.3 Surface Temperature,  

4.6  Selective Surfaces for Solar Applications,  

4.6.1 Characteristics of Solar Radiation,  

4.6.2 Modification of Surface Spectral Characteristics,  

4.7 Concluding Remarks,  

 

Chapter 5. Configuration Factors for Diffuse Surfaces with Uniform Radiosity  (3 sessions, 

Factors are the basis for most engineering treatments of radiation, so this is an 

important chapter to cover in some detail.)  

5.1 Radiative Transfer Equation for Surfaces Separated by a Transparent Medium 

Enclosures with Diffuse Surfaces 

Enclosures with Directional (Nondiffuse) and Spectral (Nongray) Surfaces  
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5.2 Geometric Configuration Factors between Two Surfaces 

Configuration Factor for Energy Exchange between Diffuse Differential                           

Areas 

Configuration Factor between a Differential Area Element and a Finite Area 

Configuration Factor and Reciprocity for Two Finite Areas 

5.3Methods for Determining Configuration Factors 

Configuration-Factor Algebra 

Configuration-Factor Relations in Enclosures 

Techniques for Evaluating Configuration Factors 

Computer Programs for Evaluation of Configuration  

5.4 Constraints on Configuration Factor Accuracy 

5.5 Compilation of Known Configuration Factors and their References: Appendix C and 

Web Catalog 

 

Chapter 6. Radiation Exchange in Enclosures Bounding Transparent Media (4 sessions: This 

chapter presents the basis for most standard radiative transfer analysis, so a good grasp of 

the content is important) 

6.1 Introduction 

6.2 Radiative Transfer for Black Surfaces 

  Radiation Exchange in a Black Enclosure 

6.3 Radiation Among Finite Diffuse-Gray Areas 

Net-Radiation Method for Enclosures 

Enclosure Analysis in Terms of Energy Absorbed at Surface 

Matrix Inversion for Enclosure Equations 

6.4 Radiation Analysis Using Infinitesimal Areas 

Generalized Net-Radiation Method Using Infinitesimal Areas 

Boundary Conditions Specifying Inverse Problems 

6.5 Computer Programs for Enclosure Analysis 

6.6  Nongray and/or Nondiffuse Surfaces 

6.7  Enclosure Theory for Diffuse Nongray Surfaces 

  Parallel Plates 

 6.8 Directional-Gray Surfaces 

 6.9 Radiation Exchange in Enclosures with Specularly Reflecting Surfaces 

  Cases with Simple Geometries 

6.10 Multiple Radiation Shields 

6.11 Concluding Remarks 

 

Chapter 7. Radiation Combined with Conduction and Convection at Boundaries (3 sessions; 

first encounter with nonlinear equations, many important applications.) 

7.1 Introduction 

7.2 Energy Relations and Boundary Conditions 

General Relations 

Uncoupled and Coupled Energy Transfer Modes 
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Control Volume Approach for One- or Two-Dimensional Conduction along Thin 

Walls 

7.3 Radiation Transfer with Conduction Boundary Conditions 

Thin Fins with 1D or 2D Conduction 

7.4 Radiation with Convection and Conduction 

Thin Radiating Fins with Convection 

Channel Flows 

Natural Convection with Radiation 

7.5 Numerical Solution Methods 

Numerical Formulations for Combined-Mode Energy Transfer 

  Verification, Validation and Uncertainty Quantification  

7.6 Concluding Remarks 

 

Chapter 8: Properties of Participating Media (2 sessions; coverage here depends on how 

deeply will go into participating media. If brief, cover at least highlighted sections.) 

8.1 Introduction 

 Propagation of Radiation in Absorbing Media 

8.2 Spectral Lines and Bands  

Physical Mechanisms 

Local Thermodynamic Equilibrium (LTE) 

Spectral Line Broadening 

8.3 Band Models  

Probability Density Function-Based Band Correlations 

Weighted Sum of Gray Gases  

8.4 Gas Total Emittance Correlations 

8.5 Mean Absorption Coefficients  

8.6 Translucent Liquids and Solids 

8.7 Absorption and Scattering: Definitions 

Absorption and Scattering Coefficients, Cross Sections, Efficiencies 

Scattering Phase Function  

8.7 Scattering by Spherical Particles 

Large Specularly Reflecting Sphere 

Large Diffuse Sphere 

Large Ideal Dielectric Sphere with n ≈ 1 

Diffraction by a Large Sphere 

Geometric Optics Approximation 

8.8 Scattering by Small Particles 

Rayleigh Scattering by Small Spheres 

Scattering Cross Section for Rayleigh Scattering 

Phase Function for Rayleigh Scattering 
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8.9 Lorenz-Mie Theory for Spherical and Cylindrical Particles  

8.10 Approximate Anisotropic Scattering Phase Functions 

Forward-Scattering Phase Function 

Linear-Anisotropic Phase Function 

Delta-Eddington Phase Function 

Henyey–Greenstein Phase Function 

8.11 Dependent Absorption and Scattering  

8.12 Remarks 

 

Chapter 9. Radiative Transfer Relations in Media (2 sessions; brief coverage might include 

highlighted sections)  

9.1 Introduction 

9.2 Energy Equation and Boundary Conditions  

9.3 Radiative Transfer in Absorbing, Emitting, and Scattering Medium  

Radiative Transfer Equation 

Source Function 

Gray Medium  

9.4 Mean Beam-Length Approximation  

Mean Beam Length for a Medium between Parallel Plates  

Radiation from Entire Medium Volume to its Entire Boundary for Optically Thin 

Media 

Correction to Mean Beam Length when Medium is not Optically Thin 

9.5 Exchange of Total Radiation in an Enclosure by use of Mean Beam Length 

Total Radiation from Entire Medium Volume to All or Part of its Boundary 

Exchange between Entire Medium Volume and an Emitting Boundary 

 9.6  Radiative Transfer in Plane Layers with Participating Media  

Radiative Transfer Equation and Radiative Intensity  

Local Radiative Flux in a Plane Layer 

Divergence of the Radiative Flux: Radiative Energy Source 

Source Function in a Plane Layer 

Relations for Isotropic Scattering 

9.7 Gray Plane Layer in Radiative Equilibrium 

Energy Equation 

Results for Gray Medium with dqr /dx = 0 between Diffuse-Gray Boundaries at 

Specified Temperatures 

 

10. Numerical Solution of Radiative Transfer in Participating Media (1 Session; Can skim 

the methods, describe how each works in physical terms.)  

10.1 Introduction  

10.2 Series Expansion and Moment Methods  
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Optically Thick Media: Radiative Diffusion 

Moment-Based Methods 

10.3 Discrete Ordinates (SN) Method 

10.4 Zonal Method 

Exchange Area Relations 

Zonal Formulation for Radiative Equilibrium  

 10.5 The Monte Carlo Method 

  Basis of the Monte Carlo Method 

 Application to Thermal Radiative Transfer in Enclosures 

Model of the Radiative Exchange Process 

 Monte Carlo for Participating Media 

 10.6 Conjugate Energy Transfer in Participating Media  

 Radiation Combined with Conduction 

 Combined Convection, Conduction, and Radiation  

  Verification, Validation, and Uncertainty Quantification  

 

Chapter 11. Radiative Effects in Solids, Windows, and Coatings (1 session; pick an area of 

interest for concentration, perhaps flat plate solar collector design.)  

11.1 Introduction 

11.2 Transmission, Absorption, and Reflection for Windows    

  Single Partially Transmitting Layer with Thickness D >> λ  

Multiple Parallel Windows 

Transmission through Multiple Parallel Glass Plates 

Flat Plate Solar Collectors 

Thin Film with Interference Effects 

11.4 Light Pipes and Fiber Optics 

11.5 Final Remarks 

 

Chapter 12: Emerging Areas (1 session; this chapter is chiefly discussion of areas where 

radiative transfer is becoming increasingly important.) 

12.1 Introduction 

12.2 Nanoscale Radiation Energy Transfer 

12.3 Radiation Transfer for Inverse Applications 

12.4 Radiation Transfer in Emerging Manufacturing Processes 

12.5 Radiation Transfer for Diagnostics 

12.6 Radiation and Climate Effects 

12.7 Conclusions 
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K: RADIATIVE PROPERTIES 

Tables K.1 and K.2 of normal total emissivities and normal total absorptivities for incident solar radiation, 

respectively, are provided here for convenience in working problems and to give the reader an indication 

of the magnitudes to be expected. As discussed in Chapter 4, many factors such as roughness and oxidation 

can strongly affect the radiative properties. No attempt is made here to describe in detail the condition of 

the material sample; hence, the values given here are only reasonable approximations in some instances. 

For detailed information on radiative properties including sample descriptions and results from many 

sources, the reader is referred to the collections in Gubareff et al. (1960), Wood et al. (1964), Touloukian 

and Ho (1970, 1972a,b), and Palik (1998). The list of properties given by Touloukian and Ho in three 

volumes is very extensive. Additional information is in Svet (1965). Henninger (1984) has information on 

spacecraft materials and absorption for the solar spectrum. Additional properties are available on the web, 

with varying degrees of credibility. As will be seen from the references cited, for the same material, there 

can be considerable differences in the property values measured by different investigators. 
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L: CATALOG OF SELECTED  

CONFIGURATION FACTORS* 

1 

Area dA1 of differential width and any length, to infinitely 

long strip dA2 of differential width and with parallel 

generating line to dA1 
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Plane element dA1 to plane parallel rectangle; normal to 

element passes through the corner of a rectangle 
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3 
Two infinitely long, directly opposed parallel plates of the 

same finite width 
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4 Identical, parallel, directly opposed rectangles 
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5 
Finite rectangle A1 of any size, tilted at angle η relative to an 

infinite plane A2 

 

1 2

1
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2
− = − F  

6 
Two infinitely long plates of equal finite width w, having one 

common edge and having an included angle α to each other 
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7 
Two infinitely long plates of unequal widths h and w, having 

one common edge and having an angle of 90° to each other. 
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8 Two finite rectangles of the same length, having one common 

edge and having an angle of 90° to each other 
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9 
Plane element dA1 to circular disk in plane parallel to element; 

normal to element passes through the center of a disk 

 

2

1 2 2 2− =
+

d
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10 Parallel circular disks with centers along the same normal 
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Infinitely long plane of finite width to parallel infinitely long 

cylinder 

 

1 1
1 2 tan tan− −
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12 Infinitely long parallel cylinders of the same diameter 
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13 Concentric cylinders of infinite length 
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14 Two concentric cylinders of the same finite length 
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15 Two ring elements on the interior of a right circular cylinder 
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16 
Ring element dA1 on interior of right circular cylinder to 

circular disk A2 at the end of a cylinder 
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17 

Sphere of radius r1 to disk of radius r2; normal to center of 

disk passes through the center of a sphere 
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18 Concentric spheres 
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19 Differential or finite areas on the inside of a spherical cavity 
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* A catalog of over 320 factors is available at http:www.thermalradiation.net/IndexCat.html.. A hardcopy text is 

available at https://www.amazon.com/Configuration-Factors-John-Howell/dp/B0BZFJS9PD 
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M: EXPONENTIAL INTEGRAL RELATIONS AND TWO-
DIMENSIONAL RADIATION FUNCTIONS 

M.1 EXPONENTIAL INTEGRAL RELATIONS 

A summary of some useful exponential integral relations is presented here. Additional relations are in Chandrasekhar 

(1960), Kourganoff (1963), and Abramowitz and Stegun (1965, available on-line at various sites, since not 

copyrighted by the original publisher, US Department of Commerce.). 

For positive real arguments, the nth exponential integral is defined as 

1

2

0

( ) exp−  −
   

 
n

n

x
E x d        (M.1) 

and only positive integral values of n will be considered here. An alternative form is 

1

1
( ) exp( )



= −n n
E x xt dt

t
       (M.2) 

By differentiating Equation M.1 under the integral sign, the recurrence relation is obtained: 

1

1

( ) ( ) 2

1
( ) exp( )

−= − 

= − −

n n

d
E x E x x

dx

d
E x x

dx x

      (M.3) 

Another recurrence relation obtained by integration is 

1 1( ) exp( ) ( ) exp( ) ( ) 1+ += − − = − + n n n

d
nE x x xE x x x E x n

dx
    (M.4) 

Also, integration results in 

1( ) ( )+= − n nE x dx E x        (M.5) 

By use of Equation M.4, all exponential integrals can be reduced to the first exponential integral given by 

1

1
1

0

( ) exp−  −
=   

 
x

E x d        (M.6) 

Alternative forms of E1(x) are 

1 1
1

1

( ) exp( ) exp( )

 

− −= − = − 
x

E x t xt dt t t dt       (M.7) 

For x = 0, the exponential integrals are equal to 

1

1
(0) 2

1

(0)

= 
−

= +

nE n
n

E

       (M.8) 

For large values of x there is the asymptotic expansion 

2 3

exp( ) ( 1) ( 1)( 2)
( ) 1

− + + + 
= − + − + 

 
n

x n n n n n n
E x

x x x x
     (M.9) 
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Therefore, as x → ∞, En(x) → exp(−x)/x → 0. 

Series expansions are of the form 

2 3
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2 3
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3
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3
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     (M.10) 

where γ = 0.577216 is Euler’s constant. The general series expansion given by Abramowitz and Stegun (1965) is 

1
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where Ψ(1) = − γ and 

1

1

1
( ) 2

−

=

 = − + 
n

m

n n
m

. 

Some approximations are: 

Using Equation (M.3) gives 2( ) 0.9exp( 1.8 ) −E x x  

In Cess and Tiwari (1972), the following approximations are used: 

2

3

3 3
( ) exp

4 2

1 3
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2 2

 
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Tabulations of En(x) are in Kourganoff (1963) and Abramowitz and Stegun (1965, available on-line). Breig and 

Crosbie (1974) present forms of a generalized exponential integral function that are convenient for numerical 

computation. The generalized forms include, as a special case, the En(x) discussed here. 

M.2 TWO-DIMENSIONAL RADIATION FUNCTIONS 

For two-dimensional (2D) problems, the exponential integral functions are replaced by another set of integral 

functions. These are the Sn functions and can be defined in a number of equivalent ways. An expression that is easily 

evaluated by numerical integration is 

/2
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0

2
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

− 
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An alternative form is 
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−
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Another form is 

2 2 1/2

2 2

exp ( )
( ) , 0, 0, 0,1,2,
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From the definition of Sn(x), the values at x = 0 can be found from (n > 0): 
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1 ( /2)
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This yields S1(0) = 1, S2(0) = 2/π, S3(0) = 1/2, and S4(0) = 4/(3π). The S0(x) is related to the modified Bessel function 

by 

0 0

2
( ) ( )=


S x K x         (M.16) 

The derivative of Sn(x) is given by 

1

( )
( ), 1−= − n

n

dS x
S x n

dx
      (M.17) 

Hence, the integral of Sn is 

1( ) ( ), 0+= −  n nS x dx S x n       (M.18) 

Additional information is in Yuen and Wong (1983). 
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N: REVISED INTERNATIONAL SYSTEM OF UNITS 

 

In 2018, the International System of Units was revised to a system based on fundamental properties 

of nature from an agreed framework from the General Conference on Weights and Measures. 

The US National Institute of Standards and Technology (NIST) issued this statement: 

“On November 16, 2018, in Versailles, France, a group of 60 countries made history. With a 

unanimous vote, they dramatically transformed the international system that underpins global 

science and trade. This single action finally realized scientists’ 150-year dream of a measurement 

system based entirely on unchanging fundamental properties of nature. 

On that day, the International System of Units, informally known as the metric system — the way 

in which the world measures everything from coffee to the cosmos — changed in a way that is 

more profound than anything since its establishment following the French Revolution.  

It was a turning point for humanity.” 

The change went into effect on May 20, 2019. 

However, the effects of the changes in the SI constants used in engineering calculations of radiation 

transfer are negligible… perhaps not a turning point for us. For example, Planck’s constant and 

the Stefan-Boltzmann constant change only in the seventh or eighth significant figure. Data on 

most properties used in our calculations, such as emissivity, absorption and scattering coefficients, 
or refractive index are of the order of three significant figures, so these changes will not affect 

most engineering radiative transfer calculations. 

The revised values of the SI constants used in the books are given in the errata sheets for both the 

7th Edition of Thermal Radiation Heat Transfer and for Thermal Radiation: An introduction.  

Complete revised values are at: Tiesinga, E., Mohr, P., Newell, D. B., and Taylor, B.: CODATA 

Recommended Values of the Fundamental Physical Constants: 2018, Rev. Modern Physics, vol. 

93, 023010, June 2021.  doi.org/10.1103/RevModPhys.93.025010 
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